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In a non-standard Scale Relativity approach, the specific momentum, states density and internal 
energy conservations laws are obtained. Then, the chaoticity, either through turbulence in the fractal 
hydrodynamics approach, or through stochasticization in the Schrödinger type approach, is generated 
only by the non-differentiability of the movement trajectories of the complex fluid entities. 
Eliminating the time between normalized internal stress tensor and normalized internal energy for 
various given positions, by numerical simulations using the conservation laws mentioned above, 
hysteretic type behaviours (hysteresis type cycle) occur.   
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1. INTRODUCTION 

A great variety of materials is categorized as complex fluids: polymers (elastomers, thermoplastics, 
composites), colloidal fluids, biological fluids (DNA, proteins, cells, dispersions of biopolymers and cells, 
human blood), foams, suspensions, emulsions, gels, micelar and liquid-crystal phases, molten materials, etc. 
Therefore, fluids with non-linear viscous behaviors, as well as viscoelastic materials are complex fluids [1, 2]. 

Particle dynamics in complex fluids is highly nonlinear. For example, the formation of amorphous 
solids (glasses, granular or colloids) do not comply to the physical mechanism explaining solids 
crystallization. So, in amorphous solids, either lowering the temperature or increasing the density, the 
dynamic process achieves a level where the system cannot totally relax and therefore becomes rigid. This 
phenomenon is known as glass transition (when the temperature lowers) or jamming transition (when 
density increases) [3, 4]. Also, the stress of a viscoelastic fluid, unlike the Newtonian fluid, depends not only 
on the actually stress applied, but on the one applied during previous deformation of the fluid [5]. 

Since the theoretical models which describe the complex fluids dynamics are sophisticated [1, 2, 5], in 
recent papers [6], a new topic was developed using, either the standard Scale Relativity Theory (SRT) [7], or 
the non-standard Scale Relativity Theory [8–20]. According to previous references, the dynamics of complex 
fluids entities take place on continuous but non-differentiable curves (fractal curves), so that all physical 
phenomena involved depend on space-time coordinates and on space-time scale resolution, the complex fluid 
entities may be reduced to and identified with their own trajectories, the complex fluids should behave as a 
special “fluid” lacking interactions (fractal fluid) etc. 
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In the present paper, using the non-Standard Scale Relativity Theory, the hysteretic type behaviours of 
the complex fluids are analysed.  

2. MOTION EQUATION VIA NON-DIFFERENTIABILITY 

We can simplify the dynamics of a complex fluid supposing that complex fluid entities move on 
continuous but non-differentiable curves, i.e. fractal curves (for example, the Peano curve, the Koch curve or 
the Weierstrass curve [7, 21]). 

Once accepted such a hypothesis, the dynamics of the complex fluid are given by the fractal operator 
d̂ dt [13]: 

2 12d̂ dˆ i
d

FDt
t t

 
−  

 ∂ λ  = + ⋅ ∇ − ∆ ∂ τ τ 
V ,  (1)

where 

ˆ iD F= −V V V   (2)

is the complex velocity, DV  is the differentiable and resolution scale independent velocity, FV  is the non-

differentiable and resolution scale dependent velocity, ˆ ⋅∇V  is the convective term, ( )( )2 12 d FDt −λ τ τ ∆  is 
the dissipative term, ∆  is the Laplacian operator, DF is the fractal dimension of the movement curve, λ  is 
the space scale, τ  is the time scale and 2λ τ  is a specific coefficient associated to the fractal-non-fractal 
transition. For DF any definition can be used (the Hausdorff-Besikovici fractal dimension, the Kolmogorov 
fractal dimension etc. [21]) but once accepted such a definition for DF, it has to be constant over the entire 
analysis of the complex fluid dynamics. In a particular case, for motions on Peano curves, DF = 2 [21] of the 
complex fluid entities, the fractal operator (1) reduces to Nottale’s standard operator [7].  

Applying the fractal operator (1) to the complex speed (2) and accepting the principle of scale 
covariance [7] in the form: 

ˆ ˆd
d

U
t

= −∇
V ,  (3)

we obtain the motion equation: 

( )
2 12ˆ ˆ ˆd dˆ ˆ ˆi

d
FDt U

t t

 
−  

 ∂ λ  = + ⋅ ∇ − ∆ ∇ ∂ τ τ 

V V V V V = – ,  (4)

where U is an external scalar potential. Equation (4) is a Navier – Stokes type equation. It means that at any 
point of a fractal path, the local acceleration term, ˆ

t∂ V , the non-linearly (convective) term, ( )ˆ ˆ⋅∇V V , the 

dissipative term, ( ) ( )( )2 12 ˆd FDt −λ τ τ ∆V , and the external free term U∇  make their balance. Therefore, the 

complex fluid is assimilated to a “rheological” fluid, whose dynamics are described by the complex 
velocities field, V̂  and by the imaginary viscosity type coefficient, ( ) ( )( )2 12i d FDt −λ τ τ . The “rheology” of 

the fluid can provide hysteretic type properties to the complex fluid. 

3. CHAOTICITY THROUGH TURBULENCE AND STOCHATICIZATION VIA  
NON-DIFFERENTIABILITY 

For irrotational motions of the complex fluid entities 
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ˆ 0, 0, 0D F∇× = ∇× = ∇× =V V V   (5)

we can choose V̂  of the form 

2 12 dˆ i lnV FDt
 

−  
 λ  = − ∇ ψ τ τ 

,  (6)

where lnφ ≡ ψ  is the velocity scalar potential. By substituting (6) in (4) and using the method described in 
[8, 9], it results 

2 21 12 2ˆd d ln di i 0
d

F FD Dt t U
t t

   
− −      

   
 

λ ∂ ψ λ ∇ψ    = − ∇ − + =    τ τ ∂ τ τ ψ     

V .  (7)

This equation can be integrated, up to an arbitrary phase factor which may be set to zero by a suitable 
choice of the phase of ψ and yields 

4 2
2 14 2

2

d di 0
2

F FD Dt t U
t

   
− −      

   λ λ ∂ψ   ∆ψ + − ψ =   τ τ τ ∂τ    
.  (8) 

Relation (8) is a Schrödinger type equation. For motions on Peano curves [21], DF = 2 [21] at a 
Compton scale 2

0/ / 2mλ τ = [7], with  the reduced Planck constant and m0 the rest mass of the complex 
fluid entities, the relation (8) becomes the standard Schrödinger equation. 

If ie Sψ = ρ , with ρ  the amplitude and S the phase of ψ , the complex velocity field (6) takes the 
explicit form: 

2 2
1 12 2d dˆ i ln

2
F FD Dt tS

   
− −      

   λ λ   = ∇ − ∇ ρ   τ τ τ τ   
V .  (9)

By substituting (9) in (4) and separating the real and the imaginary parts, up to an arbitrary phase factor 
which may be set at zero by a suitable choice of the phase of ψ , we obtain: 

( ) ( )D
D D Q U

t
∂

+ ⋅ ∇ = −∇ +
∂
V

V V ,   ( ) 0Dt
∂ρ

+ ∇ ⋅ ρ =
∂

V ,  (10)

with Q the specific fractal potential 

4 22 124 2

2
d d2

2
F FD DF

F
t tQ

   
− −   

   ∆ ρλ λ   = − = − − ∇ ⋅   τ τ τρ   τ

V
V .  (11)

The first equation (10) represents the specific momentum conservation law, while the second 
equation (10) represents the states density conservation law. Through the fractal velocity, FV , the specific 
fractal potential Q is a measure of non-differentiability of the complex fluid entities trajectories, i.e. of their 
chaoticity. The equations (10 and (11) define the fractal hydrodynamics model (FHM). In such a context, the 
complex fluid is assimilated to a fractal fluid. 

Now, certain conclusions are evident: i) For motions on Peano curves at Compton scale [7], the FHM 
reduces to a quantum hydrodynamic model (QHM). The fractal velocity FV  does not represent actual 
mechanical motion, but it contributes to the transfer of specific momentum and the concentration of energy. 
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This may be seen clearly from the absence of  FV  from the states density conservation law, and from its role 
in the variational principle. Any interpretation of Q should take cognizance of the “self” or internal nature of 
the specific momentum transfer. While the energy is stored in the form of the mass motion and potential 
energy (as it is classically), some is available elsewhere and only the total is conserved. It is the conservation 
of energy and specific momentum that ensures reversibility and the existence of eigenstates, but denies a 
Brownian motion [21] form of interaction with an external medium;  ii) For Peano curves motions , at spatial 
scales higher than the dimension of the boundary layer and at temporal scales higher than the oscillation 
periods of the pulsating velocities which overlaps the average velocity of the complex fluid motions, the 
FHM reduces to the standard hydrodynamical model [22]. iii) Since the position vector of the complex fluid 
entity is assimilated with a stochastic process of Wiener type [7,21], ψ  is not only the scalar potential of a 

complex velocity (through lnφ ≡ ψ ) in the frame of FHM, but also states density  (through 2ψ ) in the 
frame of a Schrödinger type model. It results the equivalence between the formalism of the FHM and the one 
of Schrödinger type. Moreover, the chaoticity, either through turbulence in the fractal hydrodynamics 
approach, or through stochasticization in the Schrödinger type approach, is generated only by the non – 
differentiability of the movement trajectories in a fractal space; iv) In the standard model (Landau’s scenario 
[22]) the Fourier spectrum is always discrete and cannot approximate a continuum spectrum than in case of a 
large number of frequencies that will generate a unlimited number of spectral components as a result of their 
beats which appear thanks to the presence of nonlinearities in the complex fluid. Yet, considering standard 
model, the flow can never be truly chaotic because, in case of multiple periodic functions, correlations tend 
to be not null, but having an oscillating character. Therefore, Landau’s scenario can describe transition 
towards chaotic behavior only in a complex fluid with an infinite number of degrees of freedom. In our case, 
when / 0tδ τ →  for 2FD ≠  the physical quantities that describe the dynamics of the complex fluid are no 
longer defined. So, in this approximation, a simulation of a system with an infinite number of degrees of 
freedom is used. Moreover, dynamic states could be generated, characterized by windows of regular 
oscillations interrupted by chaotic bursts, the transition between the two states being spontaneous, 
unpredictable and independent of any of the control parameters variation (turbulence through intermittency). 

4. HYSTERETIC TYPE BEHAVIOURS VIA NON-DIFFERENTIABILITY 

Applying the fractal operator (1) to the internal energy per unit volume, ε , and adopting the principle of 
scale covariance[7], we obtain the internal energy per unit volume conservation law:    

( ) ( ) ( ) ( ) ( )
2

12d̂ dˆ –i
d

FDt = – U
t t

∂

 
−  

 ρε ∂ ρε λ  = + ⋅ ∇ ρε ∆ ρε ∇ ∂ τ τ 
V .  (12)

For the types of movements mentioned above, separating the real part from the imaginary one in 
equation (16), we shall obtain: 

( ) ( ) ( )D D U
t

∂ ρε
+ ∇ ⋅ ρε = ρε ∇ ⋅ − ∇

∂
V V    ,    

2
12 d( ) ( )FD

F
t

 
−  

 λ  ⋅ ∇ ρε = − ∆ ρε τ τ 
V .  (13)

One can notice that, although there is internal energy per unit volume transport at differentiable scale, a 
similar phenomenon (convection transport at fractal scale – see the second equation (13)) occurs. 

For a plane symmetry, in normalized coordinates, the equations (10), (11) and the first equation (13) 
were numerically integrated with adequate initial and boundary conditions (for details see [19, 20, 23]) via 
finite differences [24]. By means of numerical solutions in Figs. 1a–f  the contour curves of the normalized 
states density N(a), normalized internal energy per unit volume Θ (b), normalized velocity Vξ  (c), normalized 
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velocity Vη  (d) , normalized current density ( )1/22 2J N V Vξ η= +  (e) and diagonal component of the normalized 

internal stress tensor type ( )2 2N V Vξ ησ = +  (f) on the normalized spatial coordinates (ξ, η) at the normalized 

times = 0.65 for N0 = 1 and 0Θ  = 1 are plotted. The following results are obtained: i) The generation of 
structures in complex fluid by means of solitons packet solutions [25] (see the pronounced contours from 
Figs. 1a–f; ii) The normalized velocity Vξ  (which is normal to the “complex fluid streamline”) is symmetric 
with respect to the symmetry axis of the space-time Gaussian, while vertices are induced at the periphery of 
the structures of the normalized velocity Vη (which is along the “complex fluid streamline”); iii) Potential 
movement couplings at fractal scale as well as the potential one at differentiable scale are performed through 
the internal stress tensor type. As a result, the complex fluid entity acquires additional kinetic energy 
(induced by non-differentiability) that allows jumps from its own “stream line” to another;  iv) Eliminating 
the time between the diagonal component of the normalized internal stress tensor type and normalized 
internal energy per unit volume for various given positions, by numerical simulations one can obtain 
hysteresis type effects. For the same ξ, such a tendency is more emphasized for small η (Fig. 2a – hysteresis 
type cycle), while for bigger η it vanishes (Fig. 2b – absence of hysteresis type cycle). 

 
 

 
 

 

 

 
 

 
 

 

 

 
 

 

 

 

 
 

Fig. 1 – Contours curves of the normalized states density N (a), normalized internal energy Θ (b), normalized velocity 
Vξ (c), normalized velocity Vη (d), normalized current density J (e) and diagonal component of the normalized internal stress tensor 

type σ  (f) on the normalized times τ = 0.65  for N0 = 1 and 0 1Θ = .  
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Fig. 2 – The dependence of the diagonal component of the normalized internal stress tensor type σ , on the normalized internal 
energy, Θ  for ξ = 0.5, η = 0.7, τ = 0-1 (hysteresis cycle (a)) and for ξ = 0.5, η = 0.9, τ = 0-1 (absence of hysteresis cycle (b)). 

5. CONCLUSIONS 

The main conclusions of the present paper are as follows: 
i) Assuming that the particle movements of a complex fluid occur on continuous but non-differentiable 

curves, the specific momentum, states density and internal energy conservation laws are obtained.  
ii) For irrotational motion the chaoticity, either through turbulence in the fractal hydrodynamics 

approach, or through stochasticization in the Schrodinger type approach, is generated only by the non-
differentiability of the movement’s trajectories of the complex fluid entities. In such a context, for Peano 
curves motions at a Compton scale the FHM reduces to QHM. Moreover, for Peano curves motions at spatial 
scales higher than the dimension of the boundary layer and at temporal scales higher than the oscillation 
periods of the pulsating velocities which overlaps the average velocity of the complex fluid motions, the 
fractal hydrodynamic model reduces to the standard hydrodynamical model;  

iii) By numerical simulations using the FHM and internal energy per unit volume conservation law, the 
generation of structures in complex fluid by means of solitons packet solutions, the symmetry of the velocity 
field with respect of symmetry axis of a space-time Gaussian, vertices at the structures periphery of the 
velocity field are obtained; 

iv) Potential movement coupling at fractal scale as well as the potential one at differentiable scale is 
performed through the internal stress tensor type. As a result, the complex fluid entity acquires additional 
kinetic energy that allows jumps from its own “stream line” to another;  

v) By the same numerical simulations, eliminating the time between internal stress tensor and internal 
energy, for various given positions, one can obtain hysteresis type effects. 
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