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This paper proposes an efficient numerical integration process for the generalized Fokker-Planck 
equation with variable coefficients. For spatial discretization the Jacobi-Gauss-Lobatto collocation (J-
GL-C) method is implemented in which the Jacobi-Gauss-Lobatto points are used as collocation 
nodes for spatial derivatives. This approach has the advantage of obtaining the solution in terms of the 
Jacobi parameters α  and β . Using the above technique, the problem is reduced to the solution of a 
system of ordinary differential equations in time. This system can be also solved by standard 
numerical techniques. Our results demonstrate that the proposed method is a powerful algorithm for 
solving nonlinear partial differential equations. 
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1. INTRODUCTION 

Many physicists and mathematicians have paid much attention to the Fokker-Planck equation in recent 
years due to its importance in mathematical physics. The Fokker-Planck equation has various applications in 
the fields of logistic population growth, flame propagation, neurophysiology, autocatalytic chemical reaction, 
branching Brownian motion process, and nuclear reactor theory; see, e.g., [1, 2]. In this direction, Tatari et 
al. [3] investigated the application of the Adomian decomposition method for solving the Fokker-Planck 
equation. Kim and Tranquilli [4] proposed a numerical solution of the Fokker-Planck equation that is a good 
approximation to the radiative transport equation when scattering was peaked sharply in the forward 
direction (it is the case for light propagation in tissues). The modified path integral method was proposed by 
Narayanana and Kumar [5] to solve the Fokker-Planck equation and to study the nature of the stochastic and 
chaotic response of the nonlinear systems. Recently, the authors of [6] developed the differential transform 
method to propose a simple scheme for solving the Fokker-Planck equation and some similar equations. 
Kazem et al. [7] proposed and developed two numerical meshless methods based on radial basis functions to 
approximate the solution of Fokker-Planck equation.  

Spectral method [8–13] is a weighted residuals method that provided the highest levels of accuracy 
attainable so it has become popular in numerical solutions of linear and nonlinear initial-boundary partial 
differential equations. Among spectral methods, collocation method has become increasingly popular due to 
its accuracy. Spectral collocation method is often used to solve different kinds of problems, e.g., nonlinear 
variable coefficient differential equations [14–17], fractional differential equations [18, 19], integral and 
integro-differential equations [20–23], function approximation, and variational problems [24]. Some other 
very interesting methods for solving differential equations are given in [25–28].  

The use of Jacobi polynomials for solving differential equations has gained increasing popularity in 
recent years [29–30]. Indeed, there are no results on J-GL-C method for solving Fokker-Planck type 
equations with variable coefficients and linear dispersion term subject to initial-boundary conditions. 
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Therefore, the objective of this work is to present a numerical algorithm for solving three Fokker-Planck type 
equations based on Jacobi pseudo-spectral method. The problem is then reduced to the solution of a system 
of ordinary differential equations in time. This system may be solved by implicit Runge-Kutta method (see, 
[31]). Finally some illustrative examples are implemented to illustrate the efficiency and applicability of the 
proposed approach. 

This paper is organized as follows. A brief review of Jacobi polynomials is given in the following 
Section. In Section 3, the way of constructing the Gauss-Lobatto collocation technique for nonlinear time-
dependent generalized Fokker-Planck equation is described using the Jacobi polynomials, and in Section 4 
the proposed method is applied to three test problems. In the last section our conclusions are presented. 

2. BASIC PROPERTIES OF JACOBI POLYNOMIALS 

 The classical Jacobi polynomial of degree k  ( ( , ) ( ),kP xα β  = 0,1,k ), associated with the two real 
parameters > 1, > 1α − β − , are obeying the following relation 
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The Jacobi polynomials are eigenfunctions of the well-known singular Sturm-Liouville equation:  
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They are equipped with the following inner product and norm,  
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The set of Jacobi polynomials satisfy orthogonality relation:  
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Let 1,1)(−NS  be the set of polynomials of degree at most N , and due to the property of the standard Jacobi-
Gauss quadrature, it follows that for any 2 1( 1,1)NS −φ∈ − ,  

1
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where ( , )
,N jx α β  ( 0 j N≤ ≤ ) and ( , )

,N j
α βϖ  ( 0 j N≤ ≤ ) are the nodes and the corresponding Christoffel numbers of 

the Jacobi-Gauss-quadrature formula on the interval 1,1)(− , respectively. Now, we introduce the following 
discrete inner product and norm  
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3. JACOBI SPECTRAL COLLOCATION METHOD 

Since the collocation method approximates differential equations, it is very easy to implement it to 
various problems, including variable coefficient and nonlinear differential equations (see, for instance [32]). 
In this section, we develop a J-GL-C method to solve numerically the Fokker-Planck equation. 

3.1. Fokker-Planck equation with variable coefficients 

In what follows, we construct a mathematical algorithm based on J-GL-C method to solve the 
generalized Fokker-Planck problem for the variable x given by: 

2

2
= 2 ( ) 4 ( ) , { , } [ 1,1] [0, ],u A x B x u x t T

t x x
∂ ∂ ∂ − + ∈ − × ∂ ∂ ∂ 

 (8) 

where )(1 xA  and )(1 xB  are referred to as the drift and diffusion coefficients and depend on the particular 
application considered. The equation is subject to the boundary conditions  

],[0,),(=)(1,),(=)1,( 21 Tttgtutgtu ∈−  (9) 

and the initial condition  
1,1].[),(=,0)( −∈xxfxu  (10)

Now we will design an efficient algorithm for solving Eqs. (8–10). Let the numerical solution ),( txu  be 
approximated by the Jacobi polynomials of degree N  in the following form:  
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In this way, we find 
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The spatial partial derivatives with respect to x  in Eq. (8) can be easily computed at the J-GL-C points to give  
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where  
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In the proposed J-GL-C method the residual of (8) is set to zero at 1N −  of collocation points. Moreover, the 
conditions (24) will be enforced at 1−  and 1. Therefore, adopting (14–18), enables one to write (8–10) in 
the form: 
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Equations (19) (using the two-point boundary conditions (24)), generate a system of ( 1)N −  ODEs in time:  
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where  
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which can be written in the following matrix form:  
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The system of ODEs (22) in time can be solved using any standard numerical technique. 

3.2. BACKWARD KOLMOGOROV EQUATION 

In this subsection, we derive a J-GL-C method to solve numerically the backward Kolmogorov model 
problem given by:  
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subject to the boundary conditions  
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The same procedure of subsection 3.1 is used for solving numerically the equations (23–25). The difference 
between the measured value of numerical solution and its actual value (absolute error), is given by  
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4. NUMERICAL RESULTS 

This section reports some numerical results obtained using the algorithm presented in the previous 
section. We implement the spectral collocation method to solve three types of Fokker-Planck equations with 
time-dependent coefficients to confirm the good accuracy of the method. Comparison of the results obtained 
by proposed method and radial basis functions method reveal that the present method is a very efficient one. 
 

Example 1. Consider the Fokker-Planck equation:  
2

2
= ( ) ( ) , { , } [0,1] [0,1]u A x B x u x t

t x x
∂ ∂ ∂ − + ∈ × ∂ ∂ ∂ 

, (27)

with ( ) = 1A x − , ( ) = 1B x , and the exact solution of this problem is ( ) =u x x t+ . Table 1 lists the RMS and 

eN  obtained by our method and the results of radial basis functions method (RBF [7]). Meanwhile the 
maximum absolute errors using the spectral collocation method for = 12N  with various choices of α  and β  
are summarized in Table 2.  
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Table 1 

Comparison of values of RMS  and Ne for J-GL-C for Example 1 

Our method N=12 RBF [7] 
α β RMS Ne N  RMS Ne 
0 0 14102.15 −×  14101.74 −×  25 2101.22 −×  2102.81 −×  
0 0.5 14101.18 −×  15109.51 −×  36 4106.52 −×  3101.50 −×  

0.5 0 15107.29 −×  15106.05 −×  49 5105.83 −×  4101.34 −×  
0.5 0.5 15103.42 −×  15102.79 −×  64 5101.71 −×  5103.93 −×  
0.5 – 0.5 15107.29 −×  15106.05 −×  81 6104.00 −×  6109.20 −×  

– 0.5 0.5 14102.97 −×  14102.35 −×  100 6101.53 −×  6103.51 −×  

Table 2 

Maximum absolute errors for = 12N  with various choices of α  and β  for Example 1 

α  β  EM  α  β  EM  
0  0  156.439 10 −×  0.5  0.5  158.43 10 −×  
0  0.5  153.21 10 −×  0.5  0  155.99 10 −×  

0.5  - 0.5  155.99 10 −×  - 0.5  0.5  142.70 10 −×  
 

Example 2. Consider the Fokker-Planck equation with variable coefficients:  
2

2
= ( ) ( ) , { , } [0,1] [0,1]u A x B x u x t

t x x
∂ ∂ ∂ − + ∈ × ∂ ∂ ∂ 

 (28)

with ( ) =A x x , 
2

( ) =
2

xB x ; the exact solution is ( ) = e tu x x . 

 

 
Fig. 1 – The approximate solution of problem (28) for

= = 0.5α β  and = 12N . 
Fig. 2 – Curves of approximate and exact solutions for 

= 0.0,0.5,1.0t  of problem (30) for = = 0.5α β  and =12N . 

  
Fig. 3 – The approximate solution of problem (29) for 

= = 0.5α β  and = 12N . 
Fig. 4 – Curves of approximate and exact solutions for 

= 0.1,0.3,0.5t  of problem (31) for = 0, = 0.5α β  and = 12N . 
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In Table 3, we list the maximum absolute values of ( , ) ( , )Nu x t u x t−  for (28) using the J-GL-C method 
with four special values of Jacobi parameters α = β = 0.5 , = = 0α β , = = 0.5α −β  and = 0, = 0.5α β  at 

= 12N . A comparison of RMS and eN  obtained by our method and those of radial basis functions methods 
(RBF [7]) are listed in Table 4.  

We plot in Fig. 1, the numerical solution ( , )u x t , with values of parameters listed in its caption to make 
it easier to compare with the analytic solution. Moreover, the curves of exact and approximate solution are 
given in Fig. 2 at various choices of t . 

Table 3 

Maximum absolute errors for = 12N  with various choices of α  and β  for Example 2 

α  β  EM  α  β  EM  

0  0  74.17 10 −×  0.5  0.5  74.12 10 −×  
0  0.5  74.20 10 −×  0.5  0  74.15 10 −×  

0.5  – 0.5  74.18 10 −×  – 0.5  0.5  74.51 10 −×  

Table 4 

Comparison of values of RMS  and  Ne  for J-GL-C for Example 2 

Our method N =12 RBF [7] 
α   β    RMS   Ne   N    RMS   Ne  

0.5   0    71.81 10 −×    71.25 10 −×    49   31.13 10 −×   48.68 10 −×  
0.5   0.5    72.03 10 −×    71.39 10 −×    64   41.10 10 −×   58.44 10 −×  
0.5   – 0.5    71.67 10 −×    71.16 10 −×    81   52.53 10 −×   51.94 10 −×  

– 0.5   0.5    72.46 10 −×    71.62 10 −×    100   51.83 10 −×   51.42 10 −×  
 

Example 3. Consider the general form of backward Kolomogorov equation:  
2

2
= ( , ) ( , ) , { , } [0,1] [0,1]u A x t B x t u x t

t x x
∂ ∂ ∂ − + ∈ × ∂ ∂ ∂ 

 (29)

with drift and diffusion coefficients given respectively by: ( , ) = ( 1)A x t x− + , 2( ) = e tB x x ; the exact 
solution of this problem is ( ) = ( 1)e tu x x + . The boundary and initial conditions have been derived from the 
exact solution.  

Table 5 

Comparison of values of RMS  and Ne for J-GL-C for Example 3 

Our method N =12 RBF [7] 
α  β  RMS Ne N  RMS Ne 

0.5  0  73.35 10 −×  71.03 10 −×  49  32.04 10 −×  47.23 10 −×  
0.5  0.5  73.08 10 −×  89.48 10 −×  64  31.54 10 −×  45.46 10 −×  
0.5  – 0.5  73.75 10 −×  71.17 10 −×  81  56.18 10 −×  52.18 10 −×  

– 0.5  0.5  74.39 10 −×  71.31 10 −×  100  66.11 10 −×  62.19 10 −×  
 

Table 5 presents a comparison of RMS and eN  acquired by our method and those of radial basis 
functions methods (RBF [7]). We plot the approximate solution ( , )u x t  in Fig. 3. As shown in Fig. 4, the 
numerical and the exact solutions fit for different values of t. Therefore, this example indicates that the 
spectral Jacobi Gauss-Lobatto collocation method is compared favorably with the analytical solution. 
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5. CONCLUSIONS 

In this paper, we proposed an efficient numerical scheme based on J-GL-C spectral method for solving 
nonlinear time-dependent generalized Fokker-Planck equation with time-dependent coefficients and 
Dirichlet boundary conditions. Numerical examples were given to demonstrate the validity and applicability 
of the method. Because of the accuracy, applicability, and validity of the proposed method, this technique is 
competitive with other numerical methods. 
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