A SHORT PROOF FOR THE CHARACTERIZATION BY ORDER AND DEGREE PATTERN OF PGL(2,q) AND $L_2(q)$

Ali MAHMOUDIFAR¹, Behrooz KHOSRAVI^{1,2}

 ¹ Amirkabir University of Technology (Tehran Polytechnic), Faculty of Math. and Computer Sci., 424, Hafez Ave., Tehran 15914, Iran,
² Institute for Research in Fundamental Sciences (IPM), School of Mathematics, P.O.Box:19395-5746, Tehran, Iran E-mail: khosravibbb@yahoo.com

The degree pattern of a finite group G is denoted by D(G). In [14] and [19] the characterization of $L_2(q)$ and PGL(2,q) by their orders and their degree patterns are proved. In this paper we give a very short proof for the main results of these papers.

Key words: projective special linear group, projective general linear group, degree pattern, prime graph.

1. INTRODUCTION

Let *N* and *P* denote the set of natural numbers and the set of prime numbers, respectively. If $n \in N$, then we denote by $\pi(n)$ the set of all prime divisors of *n*. Let *G* be a finite group. The set $\pi(|G|)$ is denoted by $\pi(G)$. Also the set of orders of the elements of *G* is denoted by $\pi_e(G)$. Obviously, $\pi_e(G)$ is closed and partially ordered by divisibility, hence it is uniquely determined by $\mu(G)$, the subset of its maximal elements. The prime graph of *G* is a graph whose vertex set is $\pi(G)$ and two distinct primes *p* and *q* are joined by an edge (we write $p \sim q$) if and only if *G* contains an element of order pq. The prime graph of *G* is denoted by $\Gamma(G)$. Denote by t(G) the numbers of connected components of $\Gamma(G)$ and by $\pi_i = \pi_i(G)$, where i = 1, 2, ..., t(G), the connected components of $\Gamma(G)$. If $2 \in \pi(G)$, then always we assume that $2 \in \pi_1$ and $\pi_2, ..., \pi_{t(G)}$ are called the odd component(s) of $\Gamma(G)$.

Let $\pi(G) = \{p_1, p_2, \dots, p_m\}$ and $p_1 < p_2 < \dots < p_m$. The degree pattern of G is denoted by D(G)and defined as follows: $D(G) = (\deg(p_1), \deg(p_2), \dots, \deg(p_m))$, where $\deg(p_i)$ is the degree of vertex p_i in $\Gamma(G)$. A group G is called OD-characterizable if G is uniquely determined by |G| and D(G).

It is proved that sporadic simple groups and their automorphism groups except $Aut(J_2)$ and Aut(McL), the alternating groups A_p, A_{p+1}, A_{p+2} and the symmetric groups S_p and S_{p+1} , where $p \in P$ are OD-characterizable [7]. In [14], it is proved that all finite simple groups with exactly four prime divisors are OD-characterizable, except A_{10} . Also in [16, 17] finite groups with the same order and degree pattern as an almost simple group related to $L_2(49)$ or $U_3(5)$ are determined. Recently in [18] and [13] it is proved that every special linear group $L_2(q)$ and every projective general linear groups PGL(2,q) are OD-characterizable. In fact, in this paper we give a very simple proof for these results. More results can be found in [1, 5, 6, 8, 9, 10, 15, 19, 20]. All further unexplained notations are standard and can be found in [2]. If $p \in P$ and $k, n \in N$, then $p^k \parallel n$ means that $p^k \mid n$ and $p^{k+1} \nmid n$.

2. PRELIMINARY RESULTS

The next lemma summarizes the structural properties of a Frobenius group and a 2-Frobenius group [2, 3]:

LEMMA 2.1. a) Let G be a Frobenius group with Frobenius kernel K and Frobenius complement H. Then t(G) = 2, $\pi(K)$ and $\pi(H)$ are the components of $\Gamma(G)$.

b) Let G be a 2-Frobenius group, i.e., G has a normal series $1 \le H \le K \le G$, such that K and G / H are Frobenius groups with kernels H and K / H, respectively. If G has even order, then

(i) t(G) = 2, $\pi_1 = \pi(G / K) \cup \pi(H)$ and $\pi_2 = \pi(K / H)$;

(ii) G / K and K / H are cyclic, |G / K| divides |Aut(K / H)| and (|G / K|, |K / H|) = 1;

(iii) H is a nilpotent group and G is a solvable group.

By using [12, Theorem A] we have the following result:

LEMMA 2.2. Let G be a finite group with $t(G) \ge 2$. Then one of the following holds:

a) G is a Frobenius or 2-Frobenius group;

b) there exists a nonabelian simple group S such that $S \leq G / N \leq Aut(S)$ for some nilpotent normal π_1 -subgroup N of G and G / S is a π_1 -group.

3. MAIN RESULTS

Throughout this section let $p \in P$, $n \in N$ and $q = p^n$.

THEOREM 3.1. Let p be an odd prime and $\varepsilon = 1$ or 2. If G is a finite group such that $|G| = q(q^2 - 1)/\varepsilon$ and $\deg(p) = 0$ in $\Gamma(G)$, then $L_2(q) \le G \le Aut(L_2(q))$.

Proof. We can easily see that if |G|=12 or 24 and deg(3) = 0 in $\Gamma(G)$, then $G \cong A_4$ or S_4 , respectively. Also by using GAP we obtain that if q = 5, then $G \cong A_5$ or S_5 , as required. Therefore let q > 5. First we show that G is not a Frobenius or 2-Frobenius group.

Step 1. If G is a Frobenius group with kernel K and complement C, then by Lemma 2.1, $\pi(K)$ and $\pi(C)$ are the connected components of $\Gamma(G)$. Since deg(p) = 0 in $\Gamma(G)$, $\pi(K) = \{p\}$ or $\pi(C) = \{p\}$. If $\pi(K) = \{p\}$, then |K| = q and $|C| = (q^2 - 1)/\varepsilon$. We know that $|K| \equiv 1 \pmod{|C|}$, which is impossible. If $\pi(C) = \{p\}$, then |C| = q and $|K| = (q^2 - 1)/\varepsilon$. Hence $(q^2 - 1)/\varepsilon \equiv 1 \pmod{|C|}$, which is a contradiction, since q > 5. Therefore, G is not a Frobenius group. Now let G be a 2-Frobenius group with normal series $1 \le H \le K \le G$, such that G/H and K are Frobenius groups with kernels K/H and H, respectively. By using Lemma 2.1, |K/H| = q and $|H| |G/K| = (q^2 - 1)/\varepsilon$, since deg(p) = 0 in $\Gamma(G)$ and p is an odd prime number. Also by Lemma 2.1, we have |G/K| | (p-1), which is a divisor of q-1. Therefore, q-1=m|G/K|, for some $m \ge 1$ and so $|H| = (q+1)m/\varepsilon$. We know that $|H| \equiv 1 \pmod{|K/H|}$. So $(q+1)m/\varepsilon \equiv 1 \pmod{q}$. Then $m \equiv \varepsilon \pmod{q}$ and so $m = \varepsilon$, since $1 \le m \le q$. Hence |H| = q + 1 and so $|G/K| = (q-1)/\varepsilon$. Also |G/K| | (p-1) and (p-1) | (q-1), which implies that q = p. Therefore, |H| = p + 1 and |K| = p(p+1). Since K is a solvable group, if t is an odd prime divisor of p+1, then K has a $\{p, t\}$ -Hall subgroup, say T. Let $s \in N$ and $t^s || (p+1)$.

1+tr = p, for some r > 0, which is a contradiction, since t | (p+1) and t is odd. We note that $t^i \equiv 1 \pmod{p}$, where $1 \le i \le s$, since p+1 is even and so $p > t^s$. Therefore $n_p = 1$, where n_p is the numbers of Sylow p-subgroups of T. Hence by using Sylow Theorem it follows that T is a nilpotent subgroup of K and so $p \sim t$ in $\Gamma(G)$, which is a contradiction, since $\deg(p) = 0$ in $\Gamma(G)$. Therefore, H is a $\{2\}$ -group, i.e., there exists a natural number α such that $|H| = p+1 = 2^{\alpha}$ ($\alpha \ge 3$, since by assumption p = q > 5). Let P be a Sylow p-subgroup of G. Since $\Phi(H) \triangleleft G$, if $\Phi(H) = \{1\}$, then $|\Phi(H)| \equiv 1 \pmod{p}$.

Since $|\Phi(H)| < p+1$, $\Phi(H) \cap C_G(P) = \{1\}$, which is a contradiction, since $\deg(p) = 0$ in $\Gamma(G)$. Hence $\Phi(H) = \{1\}$ and so H is an elementary abelian 2-group. Let $F = GF(2^{\alpha})$ and so H is the additive group of F. Also $|P| = p = 2^{\alpha} - 1$ and so P is the multiplicative group of F. Now G / K acts by conjugation on H and similarly G / K acts by conjugation on P and this action is faithful. Then G / K keeps the structure of the field F and so G / K is isomorphic to a subgroup of the automorphism group of F. Hence $|G / K| = 2^{\alpha} - 2 \le |Aut(F)| = \alpha$, which is impossible, since $\alpha \ge 3$. Therefore, G is not a 2-Frobenius group.

Step 2. By Lemma 2.2, there exists a nonabelian simple group S such that $S \le G / N \le Aut(S)$ where N is a nilpotent subgroup of G. Also by Lemma 2.2, since G / S is a π_1 -group and deg(p) = 0 in $\Gamma(G)$, we conclude that $\{p\}$ is an odd component of $\Gamma(S)$ and |S| = qm, where $m | (q^2 - 1)$. All of the nonabelian simple groups with at least two connected components are given in [11, Tables 1a, 2b and 2c]. Now we must consider each possibility separately. For convenience we omit the details of the proof and only state a few of them. We remark that in these tables, $p' \in P \setminus \{2\}$, q' is a prime power and $n' \in N$.

Case 1. Let $S = A_{n'}$, where 6 < n' = p', p'+1 or p'+2; n' or n'-2 is not prime. By using [11, Table 1a], we have p' = q, since the odd component of $\Gamma(A_{n'})$ is $\{p'\}$. As we mentioned above we have $(p'-1)! | (p'^2-1)$, which is a contradiction, since in this case $p' \ge 7$.

Case 2. Let $S = A_{n'}$, where 6 < n' = p', p' - 2 are primes. By using [11, Table 2b], we have p' = q or p'-2=q, since the odd component of $\Gamma(A_{n'})$ are $\{p'\}$ and $\{p'-2\}$. Then we must have $\alpha(p'-1)(p'-3)!$ divides p'^2-1 or $(p'-2)^2-1$, where $\alpha = p'$ if p'-2=q and $\alpha = p'-2$ if p'=q, which is a contradiction.

Case 3. Let $S = A_{p'-1}(q')$, where $(p',q') \neq (3,2), (3,4)$. We know that $m | (q^2 - 1)$, where |S| = qm. By using [11, Table 1a], we have

$$q = (q'') - 1) / (q'-1)(p',q'-1)$$

We can easily see that $q^2 - 1 < q^{2p'}$, which is a contradiction, since $q^{p'(p'-1)/2} |(q^2 - 1)|$ and $q^{p'(p'-1)/2} \ge q^{2p'}$.

Case 4. Let $S = G_2(q')$ be a Chevalley group, where $q' \equiv 0 \pmod{3}$. By using [11, Table 2b], we have $q'^2 - q' + 1 = q$ or $q'^2 + q' + 1 = q$, since the odd components of $\Gamma(S)$ are $\pi(q'^2 - q' + 1)$ or $\pi(q'^2 + q' + 1)$. Let $q'^2 + \beta q' + 1 = q$, where $\beta = 1$ or -1. Then $q'^6 | (q^2 - 1) = ((q'^2 + \beta q' + 1)^2 - 1)$. We can easily see that $(q'^2 \pm q' + 1)^2 - 1 < q'^6$, which is a contradiction.

Similarly, we can prove that S is not isomorphic to all other simple groups in Tables in [11], except $A_1(q')$.

Case 5. Let $S = A_1(q')$. If q' is even and q' > 2, then by [11, Table 2b], the odd components of $\Gamma(S)$ are $\pi(q'-1)$ or $\pi(q'+1)$. If $\pi(q'-1) = \{p\}$, then q'-1 = q and so $(q'+1) | ((q'-1)^2 - 1)$, which is impossible. If $\pi(q'+1) = \{p\}$, then q'+1 = q and so $(q'-1) | ((q'+1)^2 - 1)$. So we have q' = 4 and q = 5, which is impossible, since q > 5. Hence q' is not even.

Therefore $3 < q' \equiv \varepsilon \pmod{4}$, where $\varepsilon = 1$ or -1. By [11, Table 2b], the odd components of $\Gamma(S)$ are $\pi(q')$ and $\pi((q'+\varepsilon)/2)$. If $\pi((q'+\varepsilon)/2) = \{p\}$, then $(q'+\varepsilon)/2 = q$ and so $q' \left| \left(\left((q'+\varepsilon)/2 \right)^2 - 1 \right)$, which is a contradiction, since q' = 3. So we conclude that $\pi(q') = \{p\}$ and q' = q. Therefore we have $S = A_1(q) = L_2(q)$.

This argument shows that $L_2(q) \le G / N \le Aut(L_2(q))$ and so |N| = 1 or 2. If |N| = 2, then we have $N \le Z(G)$, which is a contradiction since $\deg(p) = 0$ in $\Gamma(G)$. Therefore |N| = 1 and $L_2(q) \le G \le Aut(L_2(q))$. \Box

COROLLARY 3.2. The finite group $L_2(q)$ is OD-characterizable.

Proof. Let G be a finite group such that $|G| = |L_2(q)|$ and $D(G) = D(L_2(q))$. We know that $|L_2(q)| = q(q^2 - 1)/d$, where d = (2, q - 1). By using [11, Table 2b], we have $\deg(p) = 0$ in $\Gamma(L_2(q))$. In [5, Theorem 1.4] it is proved that if q is even, then $G = L_2(q)$. Therefore, let q be odd. So |G| = q(q-1)/2 and $\deg(p) = 0$ in $\Gamma(G)$. By using Theorem 3.1, we have $L_2(q) \le G \le Aut(L_2(q))$. On the other hand $|G| = |L_2(q)|$ and so $G = L_2(q)$. \Box

THEOREM 3.3. The finite group PGL(2,q) is OD-characterizable.

Proof. Let G be a finite group such that |G| = |PGL(2,q)| and D(G) = D(PGL(2,q)). If q is even, then $PGL(2,q) = L_2(q)$ and by Corollary 3.2, we have G = PGL(2,q). Therefore, let q be odd. We know that $|PGL(2,q)| = q(q^2 - 1)$ and $\mu(PGL(2,q)) = \{q - 1, p, q + 1\}$. Hence deg(p) = 0 and $deg(2) = |\pi(G)| - 2$ in $\Gamma(G)$.

By using Theorem 3.1, we have $L_2(q) \le G \le Aut(L_2(q))$. Thus G is an extension of $L_2(q)$ by an involution, since $|G| = 2|L_2(q)|$. We know that $|Out(L_2(p^n))| = 2n$. In fact every element of $Out(L_2(p^n))$ is a product of a field automorphism and a diagonal automorphism. Let $\varphi \in G/L_2(q)$. If φ is a field automorphism of order 2, then φ centralizes $L_2(p)$ and so $2 \sim p$ in $\Gamma(G)$, which is a contradiction. If φ is a field-diagonal automorphism of order 2, then $\Gamma(L_2(q)) = \Gamma(G)$ (see [3]), which is impossible, since in $\Gamma(L_2(q))$ we have $deg(2) < |\pi(L_2(q))| - 2$. Therefore φ is a diagonal automorphism of $L_2(q)$.

ACKNOWLEDGEMENTS

The second author was supported in part by a grant from IPM (89200113).

REFERENCES

- 1. M. AKBARI, A.R. MOGHADDAMFAR, S. RAHBARIYAN, A characterization of some finite simple groups through their orders and degree patterns, Algebra Colloq. (to appear).
- 2. D. GORENSTEIN, Finite Groups, Harper and Row, 1968.
- 3. K.W. GRUENBER, K. W. ROGGENKAMP, *Decomposition of the augmentation ideal and of the relation modules of a finite group*, Proc. London Math. Soc. (3), **31**, *2*, pp. 149–166, 1975.
- 4. B. KHOSRAVI, n-Recognition by prime graph of the simple group PSL(2,q), J. Algebra Appl., 7, 4, pp. 1–15, 2008.
- 5. B. KHOSRAVI, Some characterizations of L₉(2) related to its prime graph, Pub. Math. Debercen, 75, 3-4, pp. 375-385, 2009.
- 6. A. R. MOGHADDAMFAR, S. RAHBARIYAN, More on the OD-characterization of a finite group, Algebra Colloq. (to appear).
- 7. A. R. MOGHADDAMFAR, A. R. ZOKAYI, *Recognizing finite groups through order and degree pattern*, Algebra Colloq., **15**, *3*, pp. 449–456, 2008.
- 8. A. R. MOGHADDAMFAR, A. R. ZOKAYI, *OD-Characterization of certain finite groups having connected prime graph,* Algebra Colloq. (to appear).
- 9. A. R. MOGHADDAMFAR, A. R. ZOKAYI, *OD-Characterization of alternating and symmetric groups of degree 16 and 22*, Frontiers of Mathematics in China (to appear).
- A. R. MOGHADDAMFAR, A. R. ZOKAYI, M. R. DARAFSHEH, A characterization of finite simple groups by the degree of vertices of their prime graph, Algebra Colloq., 12, 3, pp. 431–442, 2005.
- 11. V. D. MAZUROV, Characterizations of groups by arithmetic properties, Algebra Colloq., 11, 1, pp. 129–140, 2004.
- 12. The GAP Groups, GAP Groups, Algorithms, and Programming, Version 4.4.12; 2008 (http:// www. gap-system.org).
- 13. J. S. WILLIAMS, Prime graph components of finite groups, J. Algebra, 69, pp. 487–513, 1981.
- 14. L. ZHANG, X. LIU, *Characterization of the projective general linear groups PGL(2,q) by their orders and degree patterns,* Inter. J. Algebra and Compute., **19**, 7, pp. 873–889, 2009.
- 15. L. ZHANG, W. J. SHI, OD-Characterization of all simple K₄-groups, Algebra Collog., 16, 2, pp. 275–282, 2009.
- 16. L. ZHANG, W. J. SHI, *OD-Characterization of all simple groups whose orders are less than 10⁸*, Frontiers of Mathematics in China, **3**, *3*, pp. 461–474, 2008.
- 17. L. ZHANG, W. J. SHI, *OD-Characterization of almost simple groups related to L₂(49), Arch. Math. (BRNO),* **44**, pp. 191–199, 2008.
- 18. L. ZHANG W. J. SHI, *OD-Characterization of almost simple groups related to U*₃(5), Acta Mathematica Sinica English Series (to appear).
- 19. L. C. ZHANAG, W. J. SHI, OD-Characterization of the projective special linear groups L₂(q), Algebra Colloq. (to appear).
- L. C. ZHANG, W. J. SHI, C. G. SHAO, L. L. WANG, OD-Characterization of the simple group L₃(9), J. Guangxi University (Natural Science Edition), 34, 1, pp. 120–122, 2009.
- L. C. ZHANG, W. J. SHI, L. L. WANG, C. G. SHAO, OD-Characterization of A₁₆, J. Suzhou University (Natural Science Edition), 24, 1, pp. 7–10, 2008.

Received June 24, 2011