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The degree pattern of a finite group G is denoted by D(G). In [14] and [19] the characterization of 
2( )L q  and (2, )PGL q  by their orders and their degree patterns are proved. In this paper we give a 

very short proof for the main results of these papers.  
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1. INTRODUCTION  

Let N and P denote the set of natural numbers and the set of prime numbers, respectively. If n N∈ , 
then we denote by ( )nπ  the set of all prime divisors of n . Let G be a finite group. The set (| |)Gπ  is 
denoted by ( )Gπ . Also the set of orders of the elements of G is denoted by ( )e Gπ . Obviously, ( )e Gπ  is 
closed and partially ordered by divisibility, hence it is uniquely determined by ( )Gµ , the subset of its 
maximal elements. The prime graph of G is a graph whose vertex set is ( )Gπ and two distinct primes p  
and q are joined by an edge (we write p q∼ ) if and only if G contains an element of order pq . The prime 
graph of G is denoted by ( )GΓ . Denote by ( )t G  the numbers of connected components of ( )GΓ  and by 

( )i i Gπ = π , where 1, 2, , ( )i t G= … , the connected components of ( )GΓ . If 2 ( )Gπ∈ , then always we 
assume that 12∈π  and 2 ( ), , t Gπ π… are called the odd component(s) of ( )GΓ . 

Let { }1 2( ) , , , mG p p pπ = … and 1 2 mp p p< < < . The degree pattern of G  is denoted by ( )D G  

and defined as follows: 1 2( ) (deg( ), deg( ), , deg( ))mD G p p p= … , where deg( )ip  is the degree of vertex 

ip  in ( )GΓ . A group G is called OD-characterizable if G is uniquely determined by | |G  and ( )D G .  
It is proved that sporadic simple groups and their automorphism groups except 2( )Aut J  and 

( )Aut McL , the alternating groups 1 2, ,p p pA A A+ +  and the symmetric groups pS and 1pS + , where 
p P∈ are OD-characterizable [7]. In [14], it is proved that all finite simple groups with exactly four prime 

divisors are OD-characterizable, except 10A . Also in [16, 17] finite groups with the same order and degree 
pattern as an almost simple group related to 2 (49)L  or 3 (5)U  are determined. Recently in [18] and [13] it is 
proved that every special linear group 2 ( )L q  and every projective general linear groups (2, )PGL q  are 
OD-characterizable. In fact, in this paper we give a very simple proof for these results. More results can be 
found in [1, 5, 6, 8, 9, 10, 15, 19, 20]. All further unexplained notations are standard and can be found in [2]. 
If p P∈ and ,k n N∈ , then ||kp n means that |kp n  and 1 |kp n+ / . 
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2. PRELIMINARY RESULTS 

The next lemma summarizes the structural properties of a Frobenius group and a 2-Frobenius group [2, 
3]:  

LEMMA 2.1. a) Let G be a Frobenius group with Frobenius kernel K and Frobenius complement 
H . Then ( ) 2t G = , ( )Kπ  and ( )Hπ  are the components of ( )GΓ .  
 b) Let G  be a 2-Frobenius group, i.e., G  has a normal series 1 H K G≤ ≤ ≤ , such that K and 

/G H are Frobenius groups with kernels H and /K H , respectively. If G  has even order, then  
(i) ( ) 2t G = , 1 ( / ) ( )G K Hπ π π= ∪  and 2 ( / )K Hπ π= ;  
(ii) /G K and /K H are cyclic, | / |G K  divides | ( / ) |Aut K H  and (| / | , | / |) 1G K K H = ;  
(iii) H is a nilpotent group and G is a solvable group.  
 
By using [12, Theorem A] we have the following result:  
LEMMA 2.2. Let G be a finite group with ( ) 2t G ≥ . Then one of the following holds:  

 a) G is a Frobenius or 2-Frobenius group;  
 b) there exists a nonabelian simple group S such that / ( )S G N Aut S≤ ≤  for some nilpotent 
normal 1π -subgroup N of G and /G S is a 1π -group.  

3. MAIN RESULTS 

Throughout this section let p P∈ , n N∈ and nq p= . 

THEOREM 3.1. Let p  be an odd prime and 1ε =  or 2 . If G  is a finite group such that 
2| | ( 1) /G q q ε= −  and deg( ) 0p =  in ( )GΓ , then 2 2( ) ( ( ))L q G Aut L q≤ ≤ .  

Proof. We can easily see that if | | 12G =  or 24  and deg(3) 0=  in ( )GΓ , then 4G A≅  or 4S , 
respectively. Also by using GAP we obtain that if 5q = , then 5G A≅  or 5S , as required. Therefore let 

5q > . First we show that G is not a Frobenius or 2-Frobenius group.  

Step 1. If G is a Frobenius group with kernel K and complement C , then by Lemma 2.1, ( )Kπ  and 
( )Cπ  are the connected components of ( )GΓ . Since deg( ) 0p =  in ( )GΓ , { }( )K pπ =  or { }( )C pπ = . 

If { }( )K pπ = , then | |K q=  and 2| | ( 1) /C q ε= − . We know that | | 1(mod | |)K C≡ , which is 

impossible. If { }( )C pπ = , then | |C q=  and 2| | ( 1) /K q ε= − . Hence 2( 1) / 1 (mod )q qε− ≡ , which is 
a contradiction, since 5q > . Therefore, G is not a Frobenius group. Now let G be a 2-Frobenius group with 
normal series 1 H K G≤ ≤ ≤ , such that /G H and K are Frobenius groups with kernels /K H and H , 
respectively. By using Lemma 2.1, | / |K H q=  and 2| | | / | ( 1) /H G K q ε= − , since deg( ) 0p =  in 

( )GΓ  and p is an odd prime number. Also by Lemma 2.1, we have | / | ( 1)G K p − , which is a divisor of 
1q − . Therefore, 1 | / |q m G K− = , for some 1m ≥  and so | | ( 1) /H q m ε= + . We know that 

| | 1(mod | / |)H K H≡ . So ( 1) / 1(mod )q m qε+ ≡ . Then (mod )m qε≡  and so m ε= , since 
1 m q≤ ≤ . Hence | | 1H q= +  and so | / | ( 1) /G K q ε= − . Also | / | ( 1)G K p −  and ( 1) ( 1)p q− − , 
which implies that q p= . Therefore, | | 1H p= +  and | | ( 1)K p p= + . Since K is a solvable group, if t is 
an odd prime divisor of 1p + , then K  has a { },p t -Hall subgroup, say T . Let s N∈ and ( 1)st p + . 

Then | | sT pt=  and if tn  is the numbers of Sylow t -subgroups of T , then 1tn =  or p. If tn p= , then 
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1 tr p+ = , for some 0r > , which is a contradiction, since ( 1)t p +  and t  is odd. We note that 

1 (mod )it p≡ , where 1 i s≤ ≤ , since 1p +  is even and so sp t> . Therefore 1pn = , where pn  is the 
numbers of Sylow p -subgroups of T . Hence by using Sylow Theorem it follows that T is a nilpotent 
subgroup of K and so p t∼  in ( )GΓ , which is a contradiction, since deg( ) 0p =  in ( )GΓ . Therefore, 
H  is a { }2 -group, i.e., there exists a natural number α  such that | | 1 2H p α= + =  ( 3α ≥ , since by 

assumption 5p q= > ). Let P  be a Sylow p -subgroup of G . Since ( )H GΦ , if { }( ) 1HΦ = , then 
| ( ) | 1 (mod )H pΦ ≡ .  
Since | ( ) | 1H pΦ < + , { }( ) ( ) 1GH C PΦ ∩ = , which is a contradiction, since deg( ) 0p =  in ( )GΓ . 

Hence { }( ) 1HΦ =  and so H  is an elementary abelian 2 -group. Let (2 )F GF α=  and so H  is the 

additive group of F . Also | | 2 1P p α= = −  and so P  is the multiplicative group of F . Now /G K acts 
by conjugation on H  and similarly /G K acts by conjugation on P  and this action is faithful. Then 

/G K  keeps the structure of the field F  and so /G K  is isomorphic to a subgroup of the automorphism 
group of F . Hence | / | 2 2 | ( ) |G K Aut Fα α= − ≤ = , which is impossible, since 3α ≥ . Therefore, G  is 
not a 2-Frobenius group.  

Step 2. By Lemma 2.2, there exists a nonabelian simple group S  such that / ( )S G N Aut S≤ ≤  
where N  is a nilpotent subgroup of G . Also by Lemma 2.2, since /G S  is a 1π -group and deg( ) 0p =  in 

( )GΓ , we conclude that { }p  is an odd component of ( )SΓ  and | |S qm= , where 2| ( 1)m q − . All of the 
nonabelian simple groups with at least two connected components are given in [11, Tables 1a, 2b and 2c]. 
Now we must consider each possibility separately. For convenience we omit the details of the proof and only 
state a few of them. We remark that in these tables, { }\ 2p P′∈ , q ′  is a prime power and n N′∈ .  

Case 1. Let nS A ′= , where 6 ' 'n p< = , ' 1p +  or ' 2p + ; 'n  or ' 2n −  is not prime. By using [11, 

Table 1a], we have 'p q= , since the odd component of '( )nAΓ  is { }'p . As we mentioned above we have 
2( ' 1)! ( ' 1)p p− − , which is a contradiction, since in this case ' 7p ≥ .  

Case 2. Let 'nS A= , where 6 ' ', ' 2n p p< = −  are primes. By using [11, Table 2b], we have 'p q=  

or ' 2p q− = , since the odd component of '( )nAΓ  are { }'p  and { }' 2p − . Then we must have 

( ' 1)( ' 3)!p pα − −  divides 2' 1p −  or 2( ' 2) 1p − − , where 'pα =  if ' 2p q− =  and ' 2pα = −  if 'p q= , 
which is a contradiction.  

Case 3. Let ' 1( ')pS A q−= , where ( ', ') (3,2), (3,4)p q ≠ . We know that 2( 1)m q − , where 

| |S qm= . By using [11, Table 1a], we have  

'( ' 1) / ( ' 1)( ', ' 1)pq q q p q= − − − . 

We can easily see that 2 2 '1 ' pq q− < , which is a contradiction, since '( ' 1)/2 2' ( 1)p pq q− −  and 
'( ' 1)/2 2 '' 'p p pq q− ≥ . 

Case 4. Let 2 ( ')S G q=  be a Chevalley group, where ' 0 (mod 3)q ≡ . By using [11, Table 2b], we 

have 2' ' 1q q q− + =  or 2' ' 1q q q+ + = , since the odd components of ( )SΓ  are 2( ' ' 1)q qπ − +  or 
2( ' ' 1)q qπ + + . Let 2' ' 1q q qβ+ + = , where 1β =  or 1− . Then 6 2 2 2' ( 1) (( ' ' 1) 1)q q q qβ− = + + − . We 

can easily see that 2 2 6( ' ' 1) 1 'q q q± + − < , which is a contradiction.  
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Similarly, we can prove that S is not isomorphic to all other simple groups in Tables in [11], except 

1( ')A q .  

Case 5. Let 1( ')S A q= . If 'q  is even and ' 2q > , then by [11, Table 2b], the odd components of 

( )SΓ  are ( ' 1)qπ −  or ( ' 1)qπ + . If { }( ' 1)q pπ − = , then ' 1q q− =  and so 2( ' 1) (( ' 1) 1)q q+ − − , which 

is impossible. If { }( ' 1)q pπ + = , then ' 1q q+ =  and so 2( ' 1) (( ' 1) 1)q q− + − . So we have ' 4q =  and 

5q = , which is impossible, since 5q > . Hence 'q  is not even.  
Therefore 3 ' (mod 4)q ε< ≡ , where 1ε =  or 1− . By [11, Table 2b], the odd components of ( )SΓ  

are ( ')qπ  and (( ' ) / 2)qπ ε+ . If { }(( ' ) / 2)q pπ ε+ = , then ( ' ) / 2q qε+ =  and so 
2' ((( ' ) / 2) 1)q q ε+ − , which is a contradiction, since ' 3q = . So we conclude that { }( ')q pπ =  and 

'q q= . Therefore we have 1 2( ) ( )S A q L q= = .  

This argument shows that 2 2( ) / ( ( ))L q G N Aut L q≤ ≤  and so | | 1N =  or 2. If | | 2N = , then we 
have ( )N Z G≤ , which is a contradiction since deg( ) 0p =  in ( )GΓ . Therefore | | 1N =  and 

2 2( ) ( ( ))L q G Aut L q≤ ≤ . □  
 
COROLLARY 3.2. The finite group 2 ( )L q  is OD-characterizable.  

Proof. Let G  be a finite group such that 2| | | ( ) |G L q=  and 2( ) ( ( ))D G D L q= . We know that 
2

2| ( ) | ( 1) /L q q q d= − , where (2, 1)d q= − . By using [11, Table 2b], we have deg( ) 0p =  in 2( ( ))L qΓ . 

In [5, Theorem 1.4] it is proved that if q  is even, then 2 ( )G L q= . Therefore, let q  be odd. So 

| | ( 1) / 2G q q= − and deg( ) 0p =  in ( )GΓ . By using Theorem 3.1, we have 2 2( ) ( ( ))L q G Aut L q≤ ≤ . 

On the other hand 2| | | ( ) |G L q=  and so 2 ( )G L q= . □  
 
THEOREM 3.3. The finite group (2, )PGL q  is OD-characterizable.  

Proof. Let G  be a finite group such that | | | (2, ) |G PGL q=  and ( ) ( (2, ))D G D PGL q= . If q is 
even, then 2(2, ) ( )PGL q L q=  and by Corollary 3.2, we have (2, )G PGL q= . Therefore, let q  be odd. 

We know that 2| (2, ) | ( 1)PGL q q q= −  and { }( (2, )) 1, , 1PGL q q p qµ = − + . Hence deg( ) 0p =  and 

deg(2) | ( ) | 2Gπ= −  in ( )GΓ .  
By using Theorem 3.1, we have 2 2( ) ( ( ))L q G Aut L q≤ ≤ . Thus G  is an extension of 2 ( )L q  by an 

involution, since 2| | 2 | ( ) |G L q= . We know that 2| ( ( )) | 2nOut L p n= . In fact every element of 

2( ( ))nOut L p  is a product of a field automorphism and a diagonal automorphism. Let 2/ ( )G L qϕ ∈ . If ϕ  

is a field automorphism of order 2, then ϕ  centralizes 2 ( )L p  and so 2 p∼  in ( )GΓ , which is a 

contradiction. If ϕ  is a field-diagonal automorphism of order 2, then 2( ( )) ( )L q GΓ = Γ  (see [3]), which is 

impossible, since in 2( ( ))L qΓ  we have 2deg(2) | ( ( )) | 2L qπ< − . Therefore ϕ  is a diagonal automorphism 

of 2 ( )L q  and so (2, )G PGL q= .  
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