A SHORT PROOF FOR THE CHARACTERIZATION BY ORDER AND DEGREE PATTERN OF $\operatorname{PGL}(2, q)$ AND $L_{2}(q)$

Ali MAHMOUDIFAR ${ }^{1}$, Behrooz KHOSRAVI ${ }^{1,2}$
${ }^{1}$ Amirkabir University of Technology (Tehran Polytechnic), Faculty of Math. and Computer Sci., 424, Hafez Ave., Tehran 15914, Iran,
${ }^{2}$ Institute for Research in Fundamental Sciences (IPM), School of Mathematics, P.O.Box:19395-5746, Tehran, Iran
E-mail: khosravibbb@yahoo.com

Abstract

The degree pattern of a finite group G is denoted by $D(G)$. In [14] and [19] the characterization of $L_{2}(q)$ and $P G L(2, q)$ by their orders and their degree patterns are proved. In this paper we give a very short proof for the main results of these papers.

Key words: projective special linear group, projective general linear group, degree pattern, prime graph.

1. INTRODUCTION

Let N and P denote the set of natural numbers and the set of prime numbers, respectively. If $n \in N$, then we denote by $\pi(n)$ the set of all prime divisors of n. Let G be a finite group. The set $\pi(|G|)$ is denoted by $\pi(G)$. Also the set of orders of the elements of G is denoted by $\pi_{e}(G)$. Obviously, $\pi_{e}(G)$ is closed and partially ordered by divisibility, hence it is uniquely determined by $\mu(G)$, the subset of its maximal elements. The prime graph of G is a graph whose vertex set is $\pi(G)$ and two distinct primes p and q are joined by an edge (we write $p \sim q$) if and only if G contains an element of order $p q$. The prime graph of G is denoted by $\Gamma(G)$. Denote by $t(G)$ the numbers of connected components of $\Gamma(G)$ and by $\pi_{i}=\pi_{i}(G)$, where $i=1,2, \ldots, t(G)$, the connected components of $\Gamma(G)$. If $2 \in \pi(G)$, then always we assume that $2 \in \pi_{1}$ and $\pi_{2}, \ldots, \pi_{t(G)}$ are called the odd component(s) of $\Gamma(G)$.

Let $\pi(G)=\left\{p_{1}, p_{2}, \ldots, p_{m}\right\}$ and $p_{1}<p_{2}<\cdots<p_{m}$. The degree pattern of G is denoted by $D(G)$ and defined as follows: $D(G)=\left(\operatorname{deg}\left(p_{1}\right), \operatorname{deg}\left(p_{2}\right), \ldots, \operatorname{deg}\left(p_{m}\right)\right)$, where $\operatorname{deg}\left(p_{i}\right)$ is the degree of vertex p_{i} in $\Gamma(G)$. A group G is called OD-characterizable if G is uniquely determined by $|G|$ and $D(G)$.

It is proved that sporadic simple groups and their automorphism groups except $\operatorname{Aut}\left(J_{2}\right)$ and $\operatorname{Aut}(M c L)$, the alternating groups A_{p}, A_{p+1}, A_{p+2} and the symmetric groups S_{p} and S_{p+1}, where $p \in P$ are OD-characterizable [7]. In [14], it is proved that all finite simple groups with exactly four prime divisors are OD-characterizable, except A_{10}. Also in [16, 17] finite groups with the same order and degree pattern as an almost simple group related to $L_{2}(49)$ or $U_{3}(5)$ are determined. Recently in [18] and [13] it is proved that every special linear group $L_{2}(q)$ and every projective general linear groups $P G L(2, q)$ are OD-characterizable. In fact, in this paper we give a very simple proof for these results. More results can be found in $[1,5,6,8,9,10,15,19,20]$. All further unexplained notations are standard and can be found in [2]. If $p \in P$ and $k, n \in N$, then $p^{k} \| n$ means that $p^{k} \mid n$ and $\left.p^{k+1}\right\rangle n$.

2. PRELIMINARY RESULTS

The next lemma summarizes the structural properties of a Frobenius group and a 2-Frobenius group [2, 3]:

LEMMA 2.1. a) Let G be a Frobenius group with Frobenius kernel K and Frobenius complement H. Then $t(G)=2, \pi(K)$ and $\pi(H)$ are the components of $\Gamma(G)$.
b) Let G be a 2-Frobenius group, i.e., G has a normal series $1 \leq H \leq K \leq G$, such that K and G / H are Frobenius groups with kernels H and K / H, respectively. If G has even order, then
(i) $t(G)=2, \pi_{1}=\pi(G / K) \cup \pi(H)$ and $\pi_{2}=\pi(K / H)$;
(ii) G / K and K / H are cyclic, $|G / K|$ divides $|A u t(K / H)|$ and $(|G / K|,|K / H|)=1$;
(iii) H is a nilpotent group and G is a solvable group.

By using [12, Theorem A] we have the following result:
LEMMA 2.2. Let G be a finite group with $t(G) \geq 2$. Then one of the following holds:
a) G is a Frobenius or 2-Frobenius group;
b) there exists a nonabelian simple group S such that $S \leq G / N \leq A u t(S)$ for some nilpotent normal π_{1}-subgroup N of G and G / S is a π_{1}-group.

3. MAIN RESULTS

Throughout this section let $p \in P, n \in N$ and $q=p^{n}$.
THEOREM 3.1. Let p be an odd prime and $\varepsilon=1$ or 2. If G is a finite group such that $|G|=q\left(q^{2}-1\right) / \varepsilon$ and $\operatorname{deg}(p)=0$ in $\Gamma(G)$, then $L_{2}(q) \leq G \leq \operatorname{Aut}\left(L_{2}(q)\right)$.

Proof. We can easily see that if $|G|=12$ or 24 and $\operatorname{deg}(3)=0$ in $\Gamma(G)$, then $G \cong A_{4}$ or S_{4}, respectively. Also by using GAP we obtain that if $q=5$, then $G \cong A_{5}$ or S_{5}, as required. Therefore let $q>5$. First we show that G is not a Frobenius or 2-Frobenius group.

Step 1. If G is a Frobenius group with kernel K and complement C, then by Lemma 2.1, $\pi(K)$ and $\pi(C)$ are the connected components of $\Gamma(G)$. Since $\operatorname{deg}(p)=0$ in $\Gamma(G), \pi(K)=\{p\}$ or $\pi(C)=\{p\}$. If $\pi(K)=\{p\}$, then $|K|=q$ and $|C|=\left(q^{2}-1\right) / \varepsilon$. We know that $|K| \equiv 1(\bmod |C|)$, which is impossible. If $\pi(C)=\{p\}$, then $|C|=q$ and $|K|=\left(q^{2}-1\right) / \varepsilon$. Hence $\left(q^{2}-1\right) / \varepsilon \equiv 1(\bmod q)$, which is a contradiction, since $q>5$. Therefore, G is not a Frobenius group. Now let G be a 2-Frobenius group with normal series $1 \leq H \leq K \leq G$, such that G / H and K are Frobenius groups with kernels K / H and H, respectively. By using Lemma 2.1, $|K / H|=q$ and $|H||G / K|=\left(q^{2}-1\right) / \varepsilon$, since $\operatorname{deg}(p)=0$ in $\Gamma(G)$ and p is an odd prime number. Also by Lemma 2.1, we have $\mid G / K \|(p-1)$, which is a divisor of $q-1$. Therefore, $q-1=m|G / K|$, for some $m \geq 1$ and so $|H|=(q+1) m / \varepsilon$. We know that $|H| \equiv 1(\bmod |K / H|)$. So $(q+1) m / \varepsilon \equiv 1(\bmod q)$. Then $m \equiv \varepsilon(\bmod q)$ and so $m=\varepsilon$, since $1 \leq m \leq q$. Hence $|H|=q+1$ and so $|G / K|=(q-1) / \varepsilon$. Also $|G / K| \mid(p-1)$ and $(p-1) \mid(q-1)$, which implies that $q=p$. Therefore, $|H|=p+1$ and $|K|=p(p+1)$. Since K is a solvable group, if t is an odd prime divisor of $p+1$, then K has a $\{p, t\}$-Hall subgroup, say T. Let $s \in N$ and $t^{s} \|(p+1)$. Then $|T|=p t^{s}$ and if n_{t} is the numbers of Sylow t-subgroups of T, then $n_{t}=1$ or p . If $n_{t}=p$, then
$1+t r=p$, for some $r>0$, which is a contradiction, since $t \mid(p+1)$ and t is odd. We note that $t^{i} \equiv 1(\bmod p)$, where $1 \leq i \leq s$, since $p+1$ is even and so $p>t^{s}$. Therefore $n_{p}=1$, where n_{p} is the numbers of Sylow p-subgroups of T. Hence by using Sylow Theorem it follows that T is a nilpotent subgroup of K and so $p \sim t$ in $\Gamma(G)$, which is a contradiction, since $\operatorname{deg}(p)=0$ in $\Gamma(G)$. Therefore, H is a $\{2\}$-group, i.e., there exists a natural number α such that $|H|=p+1=2^{\alpha}(\alpha \geq 3$, since by assumption $p=q>5$). Let P be a Sylow p-subgroup of G. Since $\Phi(H) \triangleleft G$, if $\Phi(H)=\{1\}$, then $|\Phi(H)| \equiv 1(\bmod p)$.
Since $|\Phi(H)|<p+1, \Phi(H) \cap C_{G}(P)=\{1\}$, which is a contradiction, since $\operatorname{deg}(p)=0$ in $\Gamma(G)$. Hence $\Phi(H)=\{1\}$ and so H is an elementary abelian 2 -group. Let $F=G F\left(2^{\alpha}\right)$ and so H is the additive group of F. Also $|P|=p=2^{\alpha}-1$ and so P is the multiplicative group of F. Now G / K acts by conjugation on H and similarly G / K acts by conjugation on P and this action is faithful. Then G / K keeps the structure of the field F and so G / K is isomorphic to a subgroup of the automorphism group of F. Hence $|G / K|=2^{\alpha}-2 \leq|\operatorname{Aut}(F)|=\alpha$, which is impossible, since $\alpha \geq 3$. Therefore, G is not a 2-Frobenius group.

Step 2. By Lemma 2.2, there exists a nonabelian simple group S such that $S \leq G / N \leq A u t(S)$ where N is a nilpotent subgroup of G. Also by Lemma 2.2 , since G / S is a π_{1}-group and $\operatorname{deg}(p)=0$ in $\Gamma(G)$, we conclude that $\{p\}$ is an odd component of $\Gamma(S)$ and $|S|=q m$, where $m \mid\left(q^{2}-1\right)$. All of the nonabelian simple groups with at least two connected components are given in [11, Tables $1 \mathrm{a}, 2 \mathrm{~b}$ and 2 c]. Now we must consider each possibility separately. For convenience we omit the details of the proof and only state a few of them. We remark that in these tables, $p^{\prime} \in P \backslash\{2\}, q^{\prime}$ is a prime power and $n^{\prime} \in N$.

Case 1. Let $S=A_{n^{\prime}}$, where $6<n^{\prime}=p^{\prime}, p^{\prime}+1$ or $p^{\prime}+2 ; n^{\prime}$ or $n^{\prime}-2$ is not prime. By using [11, Table 1a], we have $p^{\prime}=q$, since the odd component of $\Gamma\left(A_{n^{\prime}}\right)$ is $\left\{p^{\prime}\right\}$. As we mentioned above we have $\left(p^{\prime}-1\right)!\left(p^{\prime 2}-1\right)$, which is a contradiction, since in this case $p^{\prime} \geq 7$.

Case 2. Let $S=A_{n^{\prime}}$, where $6<n^{\prime}=p^{\prime}, p^{\prime}-2$ are primes. By using [11, Table 2b], we have $p^{\prime}=q$ or $p^{\prime}-2=q$, since the odd component of $\Gamma\left(A_{n^{\prime}}\right)$ are $\left\{p^{\prime}\right\}$ and $\left\{p^{\prime}-2\right\}$. Then we must have $\alpha\left(p^{\prime}-1\right)\left(p^{\prime}-3\right)$! divides $p^{\prime 2}-1$ or $\left(p^{\prime}-2\right)^{2}-1$, where $\alpha=p^{\prime}$ if $p^{\prime}-2=q$ and $\alpha=p^{\prime}-2$ if $p^{\prime}=q$, which is a contradiction.

Case 3. Let $S=A_{p^{\prime}-1}\left(q^{\prime}\right)$, where $\left(p^{\prime}, q^{\prime}\right) \neq(3,2),(3,4)$. We know that $m \mid\left(q^{2}-1\right)$, where $|S|=q m$. By using [11, Table 1a], we have

$$
q=\left(q^{\prime p^{\prime}}-1\right) /\left(q^{\prime}-1\right)\left(p^{\prime}, q^{\prime}-1\right) .
$$

We can easily see that $q^{2}-1<q^{12 p^{\prime}}$, which is a contradiction, since $q^{1 p^{\prime}\left(p^{\prime}-1\right) / 2} \mid\left(q^{2}-1\right)$ and $q^{1 p^{\prime}\left(p^{\prime}-1\right) / 2} \geq q^{12 p^{\prime}}$.

Case 4. Let $S=G_{2}\left(q^{\prime}\right)$ be a Chevalley group, where $q^{\prime} \equiv 0(\bmod 3)$. By using [11, Table 2b], we
 $\pi\left(q^{\prime 2}+q^{\prime}+1\right)$. Let $q^{12}+\beta q^{\prime}+1=q$, where $\beta=1$ or -1 . Then $q^{\prime 6} \mid\left(q^{2}-1\right)=\left(\left(q^{\prime 2}+\beta q^{\prime}+1\right)^{2}-1\right)$. We can easily see that $\left(q^{12} \pm q^{\prime}+1\right)^{2}-1<q^{16}$, which is a contradiction.

Similarly, we can prove that S is not isomorphic to all other simple groups in Tables in [11], except $A_{1}\left(q^{\prime}\right)$.

Case 5. Let $S=A_{1}\left(q^{\prime}\right)$. If q^{\prime} is even and $q^{\prime}>2$, then by [11, Table 2b], the odd components of $\Gamma(S)$ are $\pi\left(q^{\prime}-1\right)$ or $\pi\left(q^{\prime}+1\right)$. If $\pi\left(q^{\prime}-1\right)=\{p\}$, then $q^{\prime}-1=q$ and so $\left(q^{\prime}+1\right) \mid\left(\left(q^{\prime}-1\right)^{2}-1\right)$, which is impossible. If $\pi\left(q^{\prime}+1\right)=\{p\}$, then $q^{\prime}+1=q$ and so $\left(q^{\prime}-1\right) \mid\left(\left(q^{\prime}+1\right)^{2}-1\right)$. So we have $q^{\prime}=4$ and $q=5$, which is impossible, since $q>5$. Hence q^{\prime} is not even.

Therefore $3<q^{\prime} \equiv \varepsilon(\bmod 4)$, where $\varepsilon=1$ or -1 . By [11, Table 2b], the odd components of $\Gamma(S)$ are $\pi\left(q^{\prime}\right)$ and $\pi\left(\left(q^{\prime}+\varepsilon\right) / 2\right)$. If $\pi\left(\left(q^{\prime}+\varepsilon\right) / 2\right)=\{p\}$, then $\quad\left(q^{\prime}+\varepsilon\right) / 2=q \quad$ and so $q^{\prime} \mid\left(\left(\left(q^{\prime}+\varepsilon\right) / 2\right)^{2}-1\right)$, which is a contradiction, since $q^{\prime}=3$. So we conclude that $\pi\left(q^{\prime}\right)=\{p\}$ and $q^{\prime}=q$. Therefore we have $S=A_{1}(q)=L_{2}(q)$.

This argument shows that $L_{2}(q) \leq G / N \leq \operatorname{Aut}\left(L_{2}(q)\right)$ and so $|N|=1$ or 2 . If $|N|=2$, then we have $N \leq Z(G)$, which is a contradiction since $\operatorname{deg}(p)=0$ in $\Gamma(G)$. Therefore $|N|=1$ and $L_{2}(q) \leq G \leq A u t\left(L_{2}(q)\right)$.

COROLLARY 3.2. The finite group $L_{2}(q)$ is OD-characterizable.

Proof. Let G be a finite group such that $|G|=\left|L_{2}(q)\right|$ and $D(G)=D\left(L_{2}(q)\right)$. We know that $\left|L_{2}(q)\right|=q\left(q^{2}-1\right) / d$, where $d=(2, q-1)$. By using [11, Table 2b], we have $\operatorname{deg}(p)=0$ in $\Gamma\left(L_{2}(q)\right)$. In [5, Theorem 1.4] it is proved that if q is even, then $G=L_{2}(q)$. Therefore, let q be odd. So $|G|=q(q-1) / 2$ and $\operatorname{deg}(p)=0$ in $\Gamma(G)$. By using Theorem 3.1, we have $L_{2}(q) \leq G \leq A u t\left(L_{2}(q)\right)$. On the other hand $|G|=\left|L_{2}(q)\right|$ and so $G=L_{2}(q)$.

THEOREM 3.3. The finite group PGL $(2, q)$ is OD-characterizable.
Proof. Let G be a finite group such that $|G|=|P G L(2, q)|$ and $D(G)=D(P G L(2, q))$. If q is even, then $P G L(2, q)=L_{2}(q)$ and by Corollary 3.2, we have $G=P G L(2, q)$. Therefore, let q be odd. We know that $|P G L(2, q)|=q\left(q^{2}-1\right)$ and $\mu(P G L(2, q))=\{q-1, p, q+1\}$. Hence $\operatorname{deg}(p)=0$ and $\operatorname{deg}(2)=|\pi(G)|-2$ in $\Gamma(G)$.

By using Theorem 3.1, we have $L_{2}(q) \leq G \leq \operatorname{Aut}\left(L_{2}(q)\right)$. Thus G is an extension of $L_{2}(q)$ by an involution, since $|G|=2\left|L_{2}(q)\right|$. We know that $\left|\operatorname{Out}\left(L_{2}\left(p^{n}\right)\right)\right|=2 n$. In fact every element of $\operatorname{Out}\left(L_{2}\left(p^{n}\right)\right)$ is a product of a field automorphism and a diagonal automorphism. Let $\varphi \in G / L_{2}(q)$. If φ is a field automorphism of order 2 , then φ centralizes $L_{2}(p)$ and so $2 \sim p$ in $\Gamma(G)$, which is a contradiction. If φ is a field-diagonal automorphism of order 2, then $\Gamma\left(L_{2}(q)\right)=\Gamma(G)$ (see [3]), which is impossible, since in $\Gamma\left(L_{2}(q)\right)$ we have $\operatorname{deg}(2)<\left|\pi\left(L_{2}(q)\right)\right|-2$. Therefore φ is a diagonal automorphism of $L_{2}(q)$ and so $G=P G L(2, q)$.

ACKNOWLEDGEMENTS

The second author was supported in part by a grant from IPM (89200113).

REFERENCES

1. M. AKBARI, A.R. MOGHADDAMFAR, S. RAHBARIYAN, A characterization of some finite simple groups through their orders and degree patterns, Algebra Colloq. (to appear).
2. D. GORENSTEIN, Finite Groups, Harper and Row, 1968.
3. K.W. GRUENBER, K. W. ROGGENKAMP, Decomposition of the augmentation ideal and of the relation modules of a finite group, Proc. London Math. Soc. (3), 31, 2, pp. 149-166, 1975.
4. B. KHOSRAVI, n-Recognition by prime graph of the simple group $\operatorname{PSL}(2, q)$, J. Algebra Appl., 7, 4, pp. 1-15, 2008.
5. B. KHOSRAVI, Some characterizations of $L_{9}(2)$ related to its prime graph, Pub. Math. Debercen, 75, 3-4, pp. 375-385, 2009.
6. A. R. MOGHADDAMFAR, S. RAHBARIYAN, More on the OD-characterization of a finite group, Algebra Colloq. (to appear).
7. A. R. MOGHADDAMFAR, A. R. ZOKAYI, Recognizing finite groups through order and degree pattern, Algebra Colloq., 15, 3, pp. 449-456, 2008.
8. A. R. MOGHADDAMFAR, A. R. ZOKAYI, OD-Characterization of certain finite groups having connected prime graph, Algebra Colloq. (to appear).
9. A. R. MOGHADDAMFAR, A. R. ZOKAYI, OD-Characterization of alternating and symmetric groups of degree 16 and 22, Frontiers of Mathematics in China (to appear).
10. A. R. MOGHADDAMFAR, A. R. ZOKAYI, M. R. DARAFSHEH, A characterization of finite simple groups by the degree of vertices of their prime graph, Algebra Colloq., 12, 3, pp. 431-442, 2005.
11. V. D. MAZUROV, Characterizations of groups by arithmetic properties, Algebra Colloq., 11, 1, pp. 129-140, 2004.
12. The GAP Groups, GAP - Groups, Algorithms, and Programming, Version 4.4.12; 2008 (http:// www. gap-system.org).
13. J. S. WILLIAMS, Prime graph components of finite groups, J. Algebra, 69, pp. 487-513, 1981.
14. L. ZHANG, X. LIU, Characterization of the projective general linear groups $P G L(2, q)$ by their orders and degree patterns, Inter. J. Algebra and Compute., 19, 7, pp. 873-889, 2009.
15. L. ZHANG, W. J. SHI, OD-Characterization of all simple K_{4}-groups, Algebra Colloq., 16, 2, pp. 275-282, 2009.
16. L. ZHANG, W. J. SHI, OD-Characterization of all simple groups whose orders are less than 10^{8}, Frontiers of Mathematics in China, 3, 3, pp. 461-474, 2008.
17. L. ZHANG, W. J. SHI, OD-Characterization of almost simple groups related to $L_{2}(49)$, Arch. Math. (BRNO), 44, pp. 191-199, 2008.
18. L. ZHANG W. J. SHI, $O D$-Characterization of almost simple groups related to $U_{3}(5)$, Acta Mathematica Sinica - English Series (to appear).
19. L. C. ZHANAG, W. J. SHI, OD-Characterization of the projective special linear groups $L_{2}(q)$, Algebra Colloq. (to appear).
20. L. C. ZHANG, W. J. SHI, C. G. SHAO, L. L. WANG, OD-Characterization of the simple group $L_{3}(9)$, J. Guangxi University (Natural Science Edition), 34, 1, pp. 120-122, 2009.
21. L. C. ZHANG, W. J. SHI, L. L. WANG, C. G. SHAO, OD-Characterization of A_{16}, J. Suzhou University (Natural Science Edition), 24, 1, pp. 7-10, 2008.
