A PERTURBATIVE ANALYSIS OF NONLINEAR CUBIC-QUINTIC DUFFING OSCILLATORS

Khosro SAYEVAND 1, Dumitru BALEANU 2, Mojtaba FARDI 3

1 Malayer University, Faculty of Mathematical Sciences, Malayer, Iran
2 Cankaya University, Faculty of Art and Sciences, Department of Mathematics and Computer Sciences, Ankara, Turkey
3 King Abdulaziz University, Faculty of Engineering, Department of Chemical and Materials Engineering, P.O. Box 80204, Jeddah, 21589, Saudi Arabia

E-mail: ksayehvand@malayeru.ac.ir

Duffing oscillators comprise one of the canonical examples of Hamilton systems. The presence of a quintic term makes the cubic-quintic Duffing oscillator more complex and interesting to study. In this paper, the homotopy analysis method (HAM) is used to obtain the analytical solution for the nonlinear cubic-quintic Duffing oscillators. The HAM helps to obtain the frequency ω in the form of approximation series of a convergence control parameter h. The valid region of h is determined by plotting the $\omega-h$ curve and afterwards we compared the obtained results with the exact solutions.

Key words: homotopy analysis method, homotopy-Padé technique, oscillator.

1. INTRODUCTION

Duffing equation is used to model the conservative double-well oscillators, which can occur, for example, in magneto-elastic mechanical systems [1]. These systems can be presented in the following form

$$\begin{cases}
\frac{d^2 u}{dt^2} + \alpha u(t) + \beta u^3(t) + \gamma u^5(t) = 0, \\
u(0) = B, \quad u'(0) = 0,
\end{cases}
$$

(1)

where B is the amplitude of the oscillator. Under the initial conditions mentioned above the nonlinear cubic-quintic Duffing oscillator has the exact frequency [2]:

$$\omega = \frac{\pi}{2} \sqrt{\frac{\alpha + \frac{3}{2} B^2 + \frac{B^4}{4}}{}}.$$

(2)

$$M = \frac{3\beta B^2 + 2\gamma B^4}{6\alpha + 3\beta B^2 + 2\gamma B^4},$$

$$N = \frac{2\gamma B^4}{6\alpha + 3\beta B^2 + 2\gamma B^4}.$$

Eq. (1) describes an oscillator with an unknown frequency ω. Under the transformations

$$\tau = \omega t, \quad u(t) = BU(\tau),$$

(3)

the original Eq. (1) becomes
A perturbative analysis of nonlinear cubic-quintic Duffing oscillators

\[
\begin{align*}
\omega^3 \frac{d^2U}{d\tau^2} + \alpha U(\tau) + B^2\beta U^3(\tau) + B^4\gamma U^5(\tau) &= 0, \\
U(0) &= 1, \quad U'(0) = 0.
\end{align*}
\]

(4)

In the present paper, we use the homotopy analysis method (HAM) to obtain the periodic solutions of the nonlinear cubic-quintic Duffing oscillators. It is to be noted that Liao [3] employed the basic ideas of the homotopy to overcome the restrictions of traditional techniques [4–18] namely the HAM. Notice that the HAM contains an auxiliary parameter \(h \) which provides a convenient way to control the convergence region and the rate of approximation series. Liao investigated the influence of \(h \) on the convergence of solution series by means of \(h \)-curves [3].

2. APPLICATION OF HOMOTOPY ANALYSIS METHOD

The periodic solution of \(U(\tau) \) with the frequency \(\omega \) can be written as

\[
U(\tau) = \sum_{m=0}^{\infty} c_m \cos(m\tau),
\]

(5)

where \(c_m \) are coefficients. It is convenient to choose

\[
U_0(\tau) = \cos \tau,
\]

(6)

as the initial guess of \(U(\tau) \). Let \(\omega_0 \) denotes the initial guess of \(\omega \), then we choose the auxiliary linear operator

\[
L[\varphi(\tau;q)] = \omega_0^2 \left[\frac{d^2 \varphi(\tau;q)}{d\tau^2} + \varphi(\tau;q) \right],
\]

(7)

with the property

\[
L \left[C \cos \tau + C \sin \tau \right] = 0,
\]

(8)

where \(C_1 \) and \(C_2 \) are coefficients. We define a nonlinear operator

\[
N[\varphi(\tau;q),\Omega(q)] = \Omega^2(q) \frac{d^2 \varphi(\tau;q)}{d\tau^2} + \alpha \varphi(\tau;q) + B^2\beta \varphi^3(\tau;q) + B^4\gamma \varphi^5(\tau;q).
\]

(9)

Let \(h \) denotes a nonzero auxiliary parameter and \(H(\tau) \) a nonzero auxiliary function. Then, we construct the zero-order deformation equation

\[
(1 - q)L[\varphi(\tau;q)] = qhH(\tau)N[\varphi(\tau;q),\Omega(q)], \quad q \in [0,1],
\]

(10)

such that

\[
\varphi(0,q) = 1, \quad \frac{\partial \varphi(\tau;q)}{\partial \tau} \bigg|_{\tau=0} = 0.
\]

(11)

When \(q \in [0,1] \), the solution \(\varphi(\tau;q) \) varies from \(U_0(\tau) \) to \(U(\tau) \) so does \(\Omega(q) \) from \(\omega_0 \) to \(\omega \). The Taylor’s series with respect to \(q \) can be constructed for \(\varphi(\tau;q) \) and \(\Omega(q) \) and if these two series are convergent at \(q = 1 \), we have:

\[
U(\tau) = U_0(\tau) + \sum_{j=0}^{\infty} U_j(\tau), \quad \omega = \omega_0 + \sum_{j=0}^{\infty} \omega_j,
\]

(12)

where

\[
U_m(\tau) = \frac{\partial^m \varphi(\tau;q)}{m! \partial q^m} \bigg|_{q=0}.
\]

(13)

and

\[
\omega_m = \frac{\partial^m \Omega(q)}{m! \partial q^m} \bigg|_{q=0}.
\]

(14)
Differentiating the zero-order deformation Eq. (10) and Eq. (11) \(m \) times with respect to embedding parameter \(q \) and then dividing them by \(m! \) and finally setting \(q = 0 \), we have the so-called \(m \)th order deformation equation

\[
L[U_m'(\tau) - \chi_m U_{m-1}(\tau)] = hR_m(U_0, \omega_0, \ldots, U_{m-1}, \omega_{m-1}),
\]

\[U_m(0) = 0, \quad U_m'(0) = 0, \quad m \geq 1,
\]

where

\[
R_m(U_0, \omega_0, \ldots, U_{m-1}, \omega_{m-1}) = \frac{\partial^{m-1} N[\varphi(\tau; q), \Omega(q)]}{(m-1)! \partial q^{m-1}},
\]

Note that \(U_m, \omega_m \) are all unknown, but we have only Eq. (15) for \(U_m \), thus an additional algebraic equation is required for determining \(\omega_m \). It is found that the right-hand side of the \(m \)th order deformation Eq. (15) is expressed by

\[
R_m(U_0, \omega_0, \ldots, U_{m-1}, \omega_{m-1}) = \sum_{k=0}^{\psi(m)} c_{m,k}(\omega_{m-1})\cos((2k + 1)\tau),
\]

where \(c_{m,k} \) is a coefficient and \(\psi(m) \) is a positive integer dependent on order \(m \).

If \(R_m(U_0, \omega_0, \ldots, U_{m-1}, \omega_{m-1}) \) contains the term \(\cos \tau \) then the solution of Eq. (15) involves the so-called secular term \(\tau \cos \tau \) that this disobey the rules of solutions expression, thus coefficient \(c_{m,0} \) must be enforced to be zero. This provides with the additional algebraic equation for determining \(\omega_{m-1} \)

\[
c_{m,0}(\omega_{m-1}) = 0.
\]

Consequently, we obtain

\[
U_m(\tau) = \chi_m U_{m-1}(\tau) + \frac{h}{\omega_0^2} \sum_{j=1}^{\psi(m)} \frac{c_{m,j}(\omega_{m-1})}{1 - (2j + 1)^2} \cos[(2j + 1)\tau] + C_1 \cos \tau + C_2 \sin \tau,
\]

where \(C_1, C_2 \) are two coefficients and to be determined by conditions \(U_m(0) = 0 \) and \(U_m'(0) = 0 \).

Thus the \(N \) th order approximation can be given by

\[
U(\tau) = U_0(\tau) + \sum_{j=0}^{N} U_j(\tau),
\]

and

\[
\omega = \omega_0 + \sum_{j=0}^{N} \phi_j.
\]

3. NUMERICAL RESULTS AND DISCUSSION

For given \(\alpha = \beta = \gamma = 1 \) the amplitude \(\omega_{m-1} \) can be determined by the analytic approach mentioned above. For \(m = 1, 2 \) we have:

\[
\begin{align*}
\omega_0 &= \frac{1}{\sqrt{10B^4 + 12B^2 + 16}}, \\
\omega_1 &= \frac{1}{96\sqrt{10B^4 + 12B^2 + 16}(5B^4 + 6B^2 + 8)} \left(B^2 h(48 + 100B^2 + 65B^6 + 96B^4)\right).
\end{align*}
\]
Note. The obtained results contain the auxiliary parameter \(h \). It is found that convergence regions of the approximation series are dependent upon \(h \) [3]. For example, consider cases \(B = 0.1, 0.15 \). We plotted the \(\omega - h \) curve to determine the so-called valid region of \(h \), as shown in Fig. 1. Obviously, the valid regions of \(h \) for \(B = 0.1, 0.15 \) are \(-4 < h < 4 \) and \(-3.5 < h < 3.5 \), respectively, for instance for \(B = 0.1 \) we have the result \(\omega = 1.003733 \) as shown in Table 1.

Also, we consider cases \(B = 1, 1.1 \). We plotted the \(\omega - h \) curve to determine the so-called valid region of \(h \) as shown in Fig. 2. It is shown that the valid regions of \(h \) for \(B = 1, 1.1 \) are \(-1 < h < 0.9 \) and \(-0.9 < h < 0.8 \), respectively. Furthermore for \(B = 1 \), we have result \(\omega = 1.538669 \) as shown in Table 1. In Table 2, we compared the 14th order approximations of HAM with the exact solutions.

Table 1

<table>
<thead>
<tr>
<th>(M)</th>
<th>(B = 0.1(\omega = 1.003770))</th>
<th>(B = 1(\omega = 1.523590))</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1.003753</td>
<td>1.538663</td>
</tr>
<tr>
<td>8</td>
<td>1.003728</td>
<td>1.538669</td>
</tr>
<tr>
<td>9</td>
<td>1.003733</td>
<td>1.538669</td>
</tr>
<tr>
<td>10</td>
<td>1.003732</td>
<td>1.538695</td>
</tr>
<tr>
<td>11</td>
<td>1.003733</td>
<td>1.538669</td>
</tr>
<tr>
<td>12</td>
<td>1.003733</td>
<td>1.538669</td>
</tr>
<tr>
<td>13</td>
<td>1.003733</td>
<td>1.538669</td>
</tr>
<tr>
<td>14</td>
<td>1.003733</td>
<td>1.538669</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>(B)</th>
<th>HAM</th>
<th>Exact</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>1.035516</td>
<td>1.035540</td>
<td>2.32\times10^{-3}</td>
</tr>
<tr>
<td>0.5</td>
<td>1.107092</td>
<td>1.106540</td>
<td>4.99\times10^{-4}</td>
</tr>
<tr>
<td>3</td>
<td>7.636706</td>
<td>7.268630</td>
<td>5.06\times10^{-2}</td>
</tr>
<tr>
<td>5</td>
<td>20.256660</td>
<td>19.181500</td>
<td>5.60\times10^{-2}</td>
</tr>
<tr>
<td>8</td>
<td>51.078098</td>
<td>48.294600</td>
<td>5.75\times10^{-2}</td>
</tr>
<tr>
<td>10</td>
<td>79.536112</td>
<td>75.177400</td>
<td>5.79\times10^{-2}</td>
</tr>
<tr>
<td>20</td>
<td>316.703160</td>
<td>299.223000</td>
<td>5.84\times10^{-2}</td>
</tr>
<tr>
<td>50</td>
<td>1976.897968</td>
<td>1867.570000</td>
<td>5.85\times10^{-2}</td>
</tr>
</tbody>
</table>

Fig. 1 – The \(\omega - h \) curve for \(B = 0.1, 0.15 \).

Fig. 2 – The \(\omega - h \) curve for \(B = 1, 1.1 \).
3.1. Square residual error

We obtained the constant \(h \) using the least square method. In theory, at the \(M \) th-order of approximation, we can define the exact square residual error

\[
\Delta_M(h) = \int_D \left(N \left(\sum_{k=0}^{M} U_k(\tau) \omega_k \right) \right)^2 d\tau. \tag{24}
\]

Clearly, the more rapidly \(\Delta_M(h) \) decreases to zero, the faster the approximation series converges.

Remark 1. The curve of \(\Delta_{10}(h) \) versus \(h \) at \(B = 0.1 \) is shown in Fig. 3, which indicates that the optimal values of \(h \) is about -1.5.

Remark 2. The curve of \(\Delta_{10}(h) \) versus \(h \) at \(B = 1 \) is shown in Fig. 4, which indicates that the optimal values of \(h \) is about -0.78.

4. HOMOTOPY-PADÉ TECHNIQUE

The Padé technique is widely applied to enlarge the convergence region and convergence rate of given series. The so-called homotopy-Padé technique was suggested by means of combining the Padé technique with HAM.

For a given series

\[
S_k(q) = \sum_{j=0}^{k} c_j q^j, \tag{25}
\]

the corresponding \([n,m]\) Padé approximate is expressed by

\[
S_{n,m}(q) = \frac{C_{n,m}(q)}{D_{n,m}(q)} = \frac{\sum_{j=0}^{n} c_j q^j}{1 + \sum_{j=1}^{m} d_j q^j}, \tag{26}
\]

where \(c_j, d_j \) can be determined by solving the linear system:
A perturbative analysis of nonlinear cubic-quintic Duffing oscillators

\[
\begin{align*}
\omega_j + \sum_{j=0}^{i-1} \omega_{ij} d_{i-j} &= c_j, \quad i = 0, 1, \ldots, n, \\
\omega_j + \sum_{j=i-m}^{i-1} \omega_{ij} d_{i-j} &= 0, \quad i = n + 1, \ldots, n + m.
\end{align*}
\]

(27)

Setting \(q = 1 \) provides the \([n, m]\) homotopy-Padé approximation

\[
\omega^{(n,m)} = S_{n+m} (1) = \sum_{j=0}^{n+m} \omega_j = \frac{C_{n,m} (1)}{D_{n,m} (1)} = \frac{\sum_{j=0}^{n} c_j}{1 + \sum_{j=1}^{n} d_j},
\]

(28)

which accelerate the convergence rate of solution series of HAM. We have applied the homotopy-Padé technique to accelerate the convergence rate of \(M \)th-order approximations of HAM. In Table 3 we compared the approximations of homotopy-Padé technique with exact solutions.

<table>
<thead>
<tr>
<th>(B = 0.1)</th>
<th>(B = 0.3)</th>
<th>(B = 1)</th>
<th>(B = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\omega^{(0,1)} / \omega_0)</td>
<td>1.0037</td>
<td>1.00482</td>
<td>1.01757</td>
</tr>
<tr>
<td>(\omega^{(2,1)} / \omega_x)</td>
<td>1.00015</td>
<td>1.00326</td>
<td>1.01317</td>
</tr>
<tr>
<td>(\omega^{(1,1)} / \omega_x)</td>
<td>1.00011</td>
<td>1.00232</td>
<td>1.01219</td>
</tr>
<tr>
<td>(\omega^{(4,1)} / \omega_x)</td>
<td>1.00013</td>
<td>1.00236</td>
<td>1.01087</td>
</tr>
<tr>
<td>(\omega^{(3,1)} / \omega_x)</td>
<td>1.00010</td>
<td>1.00219</td>
<td>1.01058</td>
</tr>
<tr>
<td>(\omega^{(2,2)} / \omega_0)</td>
<td>1.00010</td>
<td>1.00168</td>
<td>1.00876</td>
</tr>
<tr>
<td>(\omega^{(1,1)} / \omega_0)</td>
<td>1.00010</td>
<td>1.00143</td>
<td>1.00781</td>
</tr>
</tbody>
</table>

5. CONCLUSIONS

In this paper, the HAM is presented to calculate the frequency and the solution of the nonlinear cubic-quintic Duffing oscillators. According to obtained results, the HAM and homotopy-Padé technique could give efficient frequency approximations for the nonlinear cubic-quintic Duffing oscillators. It is worth mentioning that nonlinear cubic-quintic oscillator models arise in many areas of nonlinear science, e.g., in the study of optical solitons [19]-[20]; thus in nonlinear optics the cubic-quintic Ginzburg-Landau partial differential equation is a generic nonlinear dynamical model describing optical soliton propagation in laser cavities, see, for example, Ref. [21].

REFERENCES

Received November 8, 2013