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The paper deals with computation and measurement of strand currents in a full-scale copper bar with 
non-transposed strands. In this eddy currents problem, the current density distribution within multi-
strand conductor are calculated with a numerical method (strips method) and are compared with the 
measured values using a full scale model bar test setup. The calculated results are close to the 
measured values of the strand currents and confirm the effectiveness of the “strips method” providing 
a good estimation of both strand currents and additional losses in multi-strand winding bars (including 
windings bar with transposed strands) of high power electrical machines. 
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1. INTRODUCTION 

The eddy currents are one of the main problem in the field of electrical machines design. The time-
varying magnetic field within a conducting material causes eddy currents that flow within the conductor and 
causes additional and unwanted losses and, in consequences, additional heating. Because temperature rise in 
stator coils of electrical machines is a major design-limiting factor, it is necessary to minimize the additional 
copper losses. Minimization of these additional losses within the multi-strand windings is an important goal 
having as effect the increase of the efficiency of high power electrical machines. Even a small improvement 
in efficiency of high power machines can give a considerable amount of financial savings. In order to solve 
this optimization problem it is necessary to estimates all the strand currents. 

The eddy currents within a current-carrying conductor lying in a slot, namely current displacement 
effect (“Field effect”) was originally investigated by Field [1] using Poisson equation in the case of an open-
type slot, with the assumption that all flux lines go straight across the slot. 

Swann and Salmon [2] investigates analytically the more general case of a semi-closed slot and found 
that “the current density at any point can be expressed in the form of an infinite series of hyperbolic 
functions, from which the complex impedance per unit length of conductor has been determined”. For the 
particular case of open-type slot the field pattern obtained by Swann and Salmon [2] is precisely of the form 
assumed by Field, namely that “the flux lines go straight across the slot throughout its depth”. 

A very interesting formulation of the steady-state skin effect problems is presented by Konrad in [3]. 
This new method consist of “replacing the diffusion equation containing two unknown quantities (the 
magnetic vector potential and the source current density vector) with a single integrodifferential equation 
containing only the unknown magnetic vector potential and the known measurable total current in the 
conductor”. The one-dimensional and two-dimensional finite element discretization of this equation has been 
treated in some author’s work. 

Vogt et al. [4, 5] investigates the displacement effect of the current in slot embedded conductors of 
electrical machines and presents the basic principles of analytical eddy-current losses calculation for single 
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and multi-strand solid conductors. Vogt suggests also a numerical method for current distribution 
computation by dividing the solid conductor in many sheets parallel with the bottom of the slot. 

The computation methods of circulating currents in multistrand bars (with or without transposition) 
used in present are based on analytical methods [6] 7] using circuit equations and self and mutual 
inductances, or finite elements method [8–11], or both analytical and numerical methods [12, 13]. 

In some previous works [14–16] the authors have been presented more detailed a method for eddy-
currents computation within multistrand bar windings of high power electrical machines. This method 
provide good estimation of the strand currents, taking in to account all the magnetic fields that produce some 
copper losses and use closed-form analytical relations. 

Based on this method, the present paper compares the calculated and measured values of the strand 
currents of a full-scale model bar with non-transposed strands. 

2. THE BASIC ELEMENTS OF THE COMPUTING METHOD 

The computation principle of this method is similar with that suggested by Vogt [4] in the case of a 
rectangular solid conductor embedded in a rectangular open-type slot. 

In order to take into account the eddy currents, generally, it is necessary to solve a 3-D problem. In this 
paper, it is assumed that the eddy currents flow in the axial direction of the conductor. This reason reduces 
the analysis to a 2-D problem. In this case, under the hypothesis of sinusoidal current carrying conductor, 
only the z – component of the current density phasor J and the y – component of the magnetic field strength 
phasor H  exists according with Fig. 1. Assuming infinite permeability of the iron, the magnetic field 
strength must be zero everywhere in the iron and at the bottom of the slot; on suppose that all flux lines go 
straight across the slot in a direction normal to the slot walls. 

According with this assumptions, the line integral of 
the magnetic field strength H , taken around the Γ – curve, 
is: 

Because infinite permeability, line integral becomes: 

The current density phasor J  is different from zero 
only in the conductor and is dependent only of x-coordinate. 
Therefore: 

 
where ( )xI u  is the total current corresponding to ABCD cross-section and depending only of the x-
coordinate. 

In consequence, substituting equations (2) and (3) into equation (1), an expression for the magnetic 
field strength is obtained as: 
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Fig. 1 – Cross-section through a solid conductor 

embedded in an open slot. 
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Let us proceed by dividing the solid conductor from Fig. 1 in many strips, numbered from 1 to n, 
parallel with the bottom of the slot. The number “n” of strips is chosen so as to be justifiably to consider that 
on the thickness of each strip the current density is constant. 

Now, to become clear the principle 
of the method, in Fig. 2 the strip number 
n = 9 was considered. Along the slot 
length L, all the strips ν (ν=1, n), have 
the same thickness h, the same electrical 
resistance Rν, but different currents νI  
and different current density νJ . The 
total current of the solid conductor is I . 
The strip currents νI  (ν=1, n), 
concentrated in the center of each strip 
are considered. 

According with electromagnetic 
induction law, the line integral of electric 
field strength E , taken around the  
γ-curve (boundary line of the dark-
surface, in Fig. 2), is: 

∫∫
γ
⋅−=⋅

γ S
sB

t
lE d

d
dd , (5)

where B  is the flux density on the dark-surface Sγ. 
If we consider the angular frequency ω of the bar current I , relation (5) becomes: 

ν+νν Φ∆⋅ω⋅−=⋅−⋅ j1 LELE , (6)

where νΦ∆  is the elementary magnetic flux corresponding to surface Sγ. 
The terms on the left side of relation (6) represents strip voltage drops along the slot length L, so that 

ννν ⋅=⋅ IRLE  (ν=1, n).  
On the other hand, the elementary magnetic flux can be formulated as: 

∑
ν

=
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1

00
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k
kI

b
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where the relation (4) was considered.  
In consequence, the relation (6) becomes: 

∑
ν

=
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k
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Because all the strips have the same thickness h, we can write: 

hb
LRRRR

c
n ⋅

⋅ρ====== ν ......21 . (9)

Substituting relation (9) into relation (8), finally, a recursion formula for the strip current is obtained as: 

∑
ν
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Fig. 2 – Strip currents νI  into the stranded conductor. 
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Only (n – 1) such relations can be written for all the n strips. In addition, it is now evident that we may 
consider another one simple relation: 

II
n

k
k =∑

=1

. (11)

Based on relations (10) and (11), all the strip currents νI  (ν=1, n) can be computed. 
This computation principle of the strip currents and strand currents into the multistrand conductor of 

the winding bars of high power machines was applied also in order to estimate finally the additional copper 
losses of bar windings with transposition strands. Many details about the method in the case of bars with 
transposition strands in [14–16] may be find. 

In what follows we presents the computed results obtained with this method and measured values of 
the strand current in a stranded full-scale bar with nontransposed strand in order to validate the method. Such 
test results and comparative results also in the paper [17] was presented 

3. FULL-SCALE MODEL BAR TEST SETUP 

In this chapter, we shortly presents the specifications of the full-scale model bar tests setup used for 
strand currents measurement. 

The model bar has 28 parallel-connected non-transposed copper strands (Fig. 3) in order to produces a 
strong skin effect and very different strand currents in the case of slot-embedded bar.  

The measurement results were used to validate the proposed method of strand currents computation. 
Each strand of the bar has one’s own transducer that allows to measure the strand current (Fig. 4). 

Therefore, it is possible to known the currents distribution on the bar cross-section. 

 
a) Top view. 

  
b) Lateral view. 

Fig. 3 – The stranded bar structure  
with 28 non-transposed strands. 

Fig. 4 – Model bar with current transducers mounted on each strand. 

The experimental test setup is shown in Fig. 5. One can be see two bars embedded in the core slot. The 
iron core is made with iron sheets of 0.5 mm thickness. The bar dimensions corresponds to the hydro-
generator of 22 MVA working in a actual Romanian power plant. 

Other technical specifications and geometrical dimensions are given in Table 1. 
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Power supply transformer       Iron core       Bottom bar         Top bar 

 

Table 1 

Specifications of the experimental model 

Length of iron core [mm] 900 
Total bar length [mm] 2000 
Slot width [mm] 20 
Slot height [mm] 100 
Bar cross-section [mm2] 42.2 x 19.1 
Strand cross-section [mm2] 6.3 x 2.5 
Strands number 28 
Transducer type LEM HTY 75P  

Fig. 5 – Photo of full-scale model bar test setup. 

4. CALCULATED AND MEASURED RESULTS 

The tests and computations were made on the model bar in three different conditions in order to 
simulate different kind of skin effects. First, the bar is placed in free space, when arise a soft skin effect. 
Second, the bar is embedded in the slot (single layer and double layer) when the skin effect is very strong. 

4.1. Model bar in free space 

Firstly, based on the strips method, the strand currents of the bar were calculated in the case when the 
bar was placed in free space. The total bar current was fixed at 492 A (rms value), at 50 Hz.  

The calculated strand currents as complex phasors (rms) are given in Table 2. 
These strand currents as phasor diagram and hodograph curve are shown in Fig. 6. 
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Table 2 

Calculated strand currents (free space) 

Strand 
No. 

Current phasor 
[A] 

Modulus 
[A] 

1; 28 19.0045 + 7.5310 j 20.4423 
2; 27 17.0043 + 8.5111 j 19.0154 
3; 26 18.3962 + 0.6766 j 18.4086 
4; 25 17.8321 – 1.8583 j 17.9286 
5; 24 17.2988 – 3.7918 j 17.7095 
6; 23 16.8689 – 5.1424 j 17.6353 
7; 22 16.5953 – 5.9263 j 17.6217 
8; 21 16.5953 – 5.9263 j 17.6217 
9; 20 16.8689 – 5.1424 j 17.6353 
10; 19 17.2988 – 3.7918 j 17.7095 
11; 18 17.8321 – 1.8583 j 17.9286 
12; 17 18.3962 + 0.6766 j 18.4086 
13; 16 17.0043 + 8.5111 j 19.0154 
14; 15 19.0045 + 7.5310 j 20.4423  

Fig. 6 – Phasor diagram of calculated strand currents  
and hodograph curve. 

The test results representing the strand currents distribution (28 strand currents) in model bar placed in 
free space are shown in Fig. 7. 

The tests were made with a total bar current of 492 A (rms value), at 50Hz. 
The calculated and measured values in these conditions are compared in Fig. 8. As shown in this figure 

there is some unsymmetrical current distribution in test results because, after test, we see some 
unsymmetrical permeability conditions in free space around the bar. 
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Fig. 7 – Measured strand currents distribution  

in the model bar in free space (492 A). 
Fig. 8 – Measured and calculated strand currents distribution 

in free space (492 A). 

4.2. Slot embedded bar – single layer 

In this case, the model bar is embedded in the slot (top position) without current in bottom bar (Fig. 5). 
The calculated strand currents as complex phasors are given in Table 3. 

The phasors diagram and hodograph curve of the strand currents are shown in Fig. 9. This phasor 
diagram (Fig. 9) is very close to the phasor diagram for the voltage drops per unit length in an elemental 
filament determined by Swann (Fig. 5 in [2]). 
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Table 3 

Calculated strand currents (slot embedded bar) 

Strand 
No. 

Current phasor 
[A] 

Modulus 
[A] 

1; 28 38.3947 + 34.1789 j 51.4039 
2; 27 36.2900 + 23.8236 j 43.4112 
3; 26 34.3752 + 12.6615 j 36.6329 
4; 25 30.5942 + 5.0139 j 31.0024 
5; 24 26.3541 – 0.7890 j 26.3659 
6; 23 22.0306 – 4.9905 j 22.5888 
7; 22 17.9016 – 7.8463 j 19.5457 
8; 21 13.6601 – 8.7083 j 16.1998 
9; 20 10.4272 – 9.5831 j 14.1620 
10; 19 7.7256 – 9.8349 j 12.5064 
11; 18 5.5843 – 9.6370 j 11.1381 
12; 17 4.0045 – 9.1313 j 9.9708 
13; 16 2.7470 – 8.5461 j 8.9767 
14; 15 2.4091 – 7.6100 j 7.9823  

Fig. 9 – Phasor diagram of calculated strand currents and hodograph 
curve in the case of slot embedded bar (total current 505 A, rms). 

Experimental recorded values of the strand currents in the slot embedded single bar using data 
acquisition system are shown in Fig. 10. Because the system has 16 channels, were recorded at a given 
moment all strand currents of first column (c1-c14) and another two strand currents of second column (c26 
and c27). As we can see in Fig. 10 the strand current c2 and c27, or c3 and c26 are very close each other. 

The test results representing the modulus of the strand currents distribution in slot embedded bar are 
shown in Fig.11. 

The tests were made with a total bar current of 505 A (rms value), at 50Hz. Without skin effect (d.c. – 
conditions) all the strand currents will be equal with 18.036 A. 

The calculated and measured values of the strand currents are compared in Fig. 12. 
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Fig. 10 – Measured time variation of the strand currents in the slot embedded single bar. 
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Fig. 11 – Measured strand currents distribution in the single 

model bar embedded in the slot (total bar current 505 A). 
Fig. 12 – Measured and calculated strand current distribution  

in slot embedded bar (total bar current 505 A). 

4.3. Slot embedded bar – double layers 

In what follows, we consider the case in which the model bar (top position) is connected in series with 
bottom bar and is carried by a.c. current (381 A, rms, 50 Hz). For this case, Table 4 contain calculated strand 
currents as complex phasors. 

These calculated currents as phasors diagram and hodograph curve are shown in Fig. 13. 
The test results representing the strand current distribution in top bar (double layers) are shown in 

Fig. 14. 
The calculated and measured values of the strand currents in top bar are compared in Fig. 15. 
Some test recorded currents in the strands of the top bar are given in Fig. 16. The neighbor strand 

currents (c1, c28, or c2, c27, and so on) are very close each other as can be see in Fig. 16b. 
As we have seen so far (Fig. 8, Fig. 12, Fig. 15) the calculated strand currents are overestimated 

because the strips method was developed assuming that the magnetic field lines in the slot are parallels to the 
slot basis (and also infinite permeability of iron) that cause a stronger skin effect that real cases. On the other 
hand, a little overestimated strand currents or copper losses are favorable, representing a good assurance and 
not disturb an optimization process of bar structure. 

c3, c26 c2, c27 c1

c4
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Table 4 

Calculated Strand Currents (Slot Embedded Bar) 

Strand 
No. 

Current phasor 
[A] 

Modulus 
[A] 

1; 28 54.8275 + 57.6247 j 79.5403 
2; 27 51.6112 + 41.8819 j 66.4667 
3; 26 48.1615 + 25.7412 j 54.6090 
4; 25 41.5761 + 14.2566 j 43.9525 
5; 24 33.8992 + 5.3459 j 34.3181 
6; 23 25.7063 – 1.4248 j 25.7457 
7; 22 17.4377 – 6.5330 j 18.6214 
8; 21 8.2959 – 8.5594 j 11.9200 
9; 20 0.7530 – 11.8212 j 11.8452 

10; 19 – 6.1861 – 14.9365 j 16.1669 
11; 18 – 12.3370 – 18.3339 j 22.0983 
12; 17 – 17.5051 – 22.6006 j 28.5870 
13; 16 – 21.2556 – 27.0273 j 34.3843 
14; 15 – 23.9459 – 33.8094 j 41.4305  

Fig. 13 – Phasor diagram of calculated strand currents and hodograph 
curve in top bar (double layer, 381 A, rms).. 
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Fig. 14 – Measured strand currents distribution in top bar 

(381 A, rms, 50 Hz) 
Fig. 15 – Measured and calculated strand currents distribution  

in top bar (381 A, rms, 50 Hz). 

a) Strand currents c1, c2, c3, …c14. b) Strand currents c1,…c8, and c21,…c28. 

Fig. 16 – Measured time variation of some strand currents in top bar (381 A, rms, 50 Hz). 

5. CONCLUSIONS 

This paper deals with analysis of strand currents distribution in a stranded bar with non-transposed 
strand. The currents distribution are calculated with a computing program based on a numerical method 
(“strip method”) presented in details in few previous papers. This program allows a faster analyze of the 

c1 c2 c1, c28 c2, c27 c3, c26 
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strand currents distribution and, if is necessary, can provide an optimal bar structure (with or without 
transposition) that means a minimum additional copper bar losses. 

The calculated strand currents are compared in the paper with measured values using a full-scale model 
bar test setup in order to validate the computing method. 

The calculated results are close to the measured values of the strand currents and confirm the 
effectiveness of the strips method that provides a good estimation of both strand currents and additional 
losses in winding bars (including Roebel bars) of high power electrical machines. 

In addition, this numerical method allows in-depth study and gives greater insight into the problem of 
skin effect in current-carrying conductors. 
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