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Numerical simulations produce large amounts of data. A key challenge is how to cope with the 
resulting bottlenecks. This paper introduces a highly efficient data handling method using parallel 
inter-processor traffic, called TRC. It is used to reconstruct the internal fields inside one or more 
regions of interest (ROIs) defined by the user. The method is implemented on top of OpenFOAM®, 
an opensource computational fluid dynamics (CFD) platform [1]. A well known CFD benchmark is 
used to demonstrate its efficiency in terms of the space savings obtained. The benchmark test-case is 
validated using experimental data from the literature. Several compression algorithms are applied to 
assess the efficiency of the method within a user-defined ROI, including ZIP and RAR [2, 3]. It is 
shown that in terms of space savings TRC has an efficiency of an order of magnitude higher, and that 
the efficiency improves as the size of the uncompressed data gets bigger. The space savings obtained 
with classic algorithms remain constant for more than 60 Gb of floating point data. The obtained 
results bring new perspectives to attention regarding data handling techniques for parallel numerical 
simulations. 
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1. INTRODUCTION 

Modern day engineering cannot be conceived without the extensive use of computers, and sometimes 
of computer simulations [4]. One of the hardest challenges of parallel high performance computing is how to 
cope with the “big data” phenomenon [5]. In particular, the results originating from parallel numerical 
simulations are often large volumes of floating point data which are tedious to move around and download. 
The present results are a continuation of the developments in [27]. 

Fig. 1 shows the generic organization of a HPC center [6]. The nodes with processing elements (PEs) 
do not own a significant amount of storage space – they rely instead on the scratch space area provided by a 
networked file system. Data on the scratch space has a limited quota and may get deleted automatically. 
Because of that, storage is delegated into specialized data warehouses, outside the HPC center. The volume 
of generated floating point data is so large, that even the high-speed internal networks connecting the PE 
nodes require compression at MPI level [7]. The external, slower connections are bound to several 
bottlenecks that appear during the data transfers. The most prominently perceived one happens at user side 
when the client downloads the results, as a consequence of Internet bandwidth limitations. Another 
bottleneck resides on the link between the gateway and the HPC facility, and finally the gateway itself is a 
bottleneck between the end-user and the HPC center. 

All methods that can compress or reduce the size of the result data have an impact on all three levels of 
bottlenecks. However since the most prominent problem is the end-user being unable to download the results 
in a feasible manner, the subject of this paper is how to solve this specific problem. 
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After completing a scientific simulation, the user is faced with the option to either post-process the data 
in situ according to a very tight schedule, or to migrate it outside the HPC facility. Many attempts have been 
made to deal with these issues. For unsteady simulations, the first thing that comes to mind (and does not 
require additional preparations) is to subsample the results by skipping some of the time steps but this is not 
always possible – for instance when a form of principal component analysis called proper orthogonal 
decomposition (POD) is required [17].  
 

 
Fig. 1 – Bottlenecks when downloading big data. 

A very specific family of lossless compressors has been designed for scientific floating point data sets 
[8–10]. They use bit predictors and dictionaries and deliver very high throughput. Whenever lossy 
compression is acceptable, the least significant bits can be discarded. A different method for obtaining lossy 
compression is to decompose the stream of numbers using wavelets [11, 12]. The less important components 
are ignored, and data can be progressively transmitted to a remote network. Another way to put this is by 
negotiating the regions of the mesh where it can be coarsened up to an acceptable degree. This is called 
adaptive coarsening (AC) [13]. 

Peer to peer techniques are used to move data outside the HPC facility [6] and to create distributed 
storage spaces for scientific data sets [14]. And finally feature extraction and tracking improve the 
visualization process with the help of artificial intelligence and statistical methods. The essential features of 
the phenomenon are compacted and transmitted without having the user to download the global fields [15]. 

There are, however, cases when the accuracy of the simulation data and the time granularity of the 
fields must be preserved. The paper addresses this problem by presenting a data reduction method based on 
the interception of parallel inter-processor traffic.  

The next section describes our solution for CFD. The experimental setup used for demonstration is 
explained in Section 3, followed by results in Section 4. This section also contains a discussion on our 
findings and compares them with state of the art compression algorithms. It also explains the validation 
process for our test case. The conclusions are drawn in the last section. 
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2. METHOD 

TRC takes advantage of local mesh refinement techniques [16]. In frequent cases of numerical 
simulation it is a common practice to simulate a larger analysis domain than what the user is really looking 
for. Consequently, a ROI can be defined in both space and time in order to capture the interesting data, but 
the exact boundary conditions for the ROI are not known – which is why the solution inside it cannot be 
obtained prior to computing the global simulation in the first place. TRC reconstructs the internal fields 
inside the ROI based on the exchange of communication between the ROI and the remaining sub-domain. 

Consider the domain of analysis in Fig. 2 which is split into sub-domains S1 and S2 via domain 
decomposition. S2 belongs to a space-time window covering the time interval from t1 to t2. Let Ω1 be the 
mesh of S1, and Ω2 the mesh of S2. The common boundary between S1 and S2 is defined by ∂Ω1 = ∂Ω2 and 
consists of cell faces with edges in 3D, or cell edges in 2D.  

For simplicity in Fig. 2 it is considered that the parallel simulation involves two processor elements 
communicating via message passing. “Processor 0” (PE0) and “Processor 1” (PE1) are two independent, 
equally performing machines. Starting with simulation time t1 and up to t2 the exchange of MPI traffic from 
PE1 towards PE0 is intercepted in situ at OSI layer 7, and dumped into a storage file called “the traffic 
archive” which contains floating point numbers. 
 

 
Fig. 2 – Traffic interception and later replay during the reconstruction of the fields. 

 The same numerical solver and configuration is used at client side to recover the information inside the 
ROI, by replaying the boundary data from the traffic file.  

If TRC is used in conjunction with POD [17], an initial estimation for the efficiency of the method can 
be made. POD requires all the intermediary time steps for the ROI to be stored on disk without any sub-
sampling. Given a cubical ROI with n cells in each direction one needs to store F bits of data on disk as 
given by equation (1) where S is the number of scalars in a cell, V the number of vectors, T the number of 
tensors and P is 32 or 64 depending on the precision used for storing the floating point values. 

( )3 9 .F n S V T P= × + +  (1)
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In equation (2), C is an estimation of the number of bits communicated between t1 and t2, and Kavg is 
the average number of numerical iterations during each time step. S’, V’ and T’ are the number of scalars, 
vectors and tensors transferred during the communication. Given that C < F, TRC compresses the data inside 
the ROI by C/F 

( )26 ' 3 ' 9 ' .avgC K n S V T P= × × + +  (2)

The method is best described by the following steps: 
1. the global simulation is run on a coarse mesh until it starts producing interesting features at t1 
2. a ROI is defined and refined inside the global domain 

a. the simulation is continued for a few time steps to observe Kavg; 
b. if C/F ≥ 1 jump to step 2; 

3. the overall domain is partitioned between the ROI and the remaining mesh; 
4. the simulation from t1 to t2 is continued, and the inter-processor traffic is intercepted; 
5. the internal fields inside the ROI are reconstructed by replaying the intercepted traffic; 
TRC is implemented on top of OpenFOAM®, an opensource CFD platform designed to enable users to 

develop their own numerical solvers, tools and experiments [1, 18]. Industry grade applications have been 
built on top of this software and are deployed in large HPC centers. 
 

if (myProcNo() == 0) { 
s = ("mydump" + ss.str()); 
fileName directory = "dumpdir"; 
mkDir(directory); 

 
OFstream mystream(directory/s); 
(*this).writeEntry("", mystream); 
mystream.setEof(); 

} 
Fig. 3 – Dumping of floating point values into the traffic archive. 

In Fig. 3 the fvPatchFields class is modified in order to intercept the floating point numbers 
communicated during the parallel simulation run. These numbers are dumped into a directory called the 
traffic archive. The next section describes the test case which has been used for validation. 

3. TEST CASE SETUP 

A well known test-case is selected in order to demonstrate the method. The European Research 
Community on Flow, Turbulence and Combustion (ERCOFTAC) has designed a number of benchmarks 
which are well known and widely used for validating CFD software. The square cylinder benchmark shown 
in Fig. 4 is one of them. It is an unsteady simulation of a turbulent flow where experimental data is available 
[19]. The test is designed to monitor the flow around a rectangular cylinder and in particular to observe the 
features of the unsteady flow behind it. 

The side of the square cylinder is D = 0.04 m with a wideness W = 0.392 m. It is located in a domain of 
the same wideness, with the length of L = 1.36 m and height H = 0.56 m. Point (0; 0; 0) of the coordinate 
system is in the center of the square cylinder on the surface of the viewpoint. The overall bounding box of 
the analysis domain, in meters, is given by (–0.4 –0.28 0) (0.96 0.28 0.392). 

The continuity and momentum equations are written in differential form in equations (3) and (4), where 
v  is flow velocity, ρ  is fluid density, p  is pressure, T  is the stress tensor and f  are the body forces. 

( ) 0,
t

∂ρ
+ ∇ ⋅ ρ =

∂
v  (3)

( ) ( ) .
t

∂ ρ
+ ∇ ⋅ ρ = ρ + ∇ ⋅

∂

v
vv f T  (4)
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Fig. 4 – Computational domain and boundary conditions (BCs). 

OpenFOAM® version 1.6 is used to perform three-dimensional turbulent unsteady numerical 
simulations. Large Eddy Simulations (LES) [20] are solved using a sub grid scale (SGS) model [21]. The 
pressure-velocity coupling algorithm is called PIMPLE, which is a mixture between the Pressure Implicit 
with Splitting of Operators (PISO) and Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) 
algorithms. The corresponding OpenFOAM® solver is pimpleFOAM [22]. 

Computational domain and boundary conditions (BCs) are shown in Fig. 4. Water enters the domain at 
the inlet with Uin = 0.535 m/s and 2% turbulence, and goes around the square cylinder forming vortices 
behind it. The Reynolds number computed with the side of the square cross section of the cylinder is 
Re = 21 400. Constant pressure is imposed at zero value on the outlet. The boundaries of the computational 
domain are modelled using slip conditions. The surfaces of the square cylinder are considered to be walls. 
Two sub-domain windows called w1 and w2 in Fig. 4 serve for two independent ROI cases. They are 
described by bounding boxes (–0.15 –0.15 0.05) (0.15 0.15 0.25) and (–0.15 –0.15 0.05) (0.25 0.15 0.25). 
These windows are used independently to test the reconstruction of the internal fields. The vortices that form 
behind the square cylinder are captured using w1 and w2 from t1 = 6 s to t2 = 7 s. The compression is 
measured by the compression ratio obtained when the traffic archive is used as a replacement for the internal 
fields of the ROIs covering the time period between t1 and t2. 

4. RESULTS, VALIDATION AND DISCUSSION 

The simulation starts with a global mesh of 200k cells. The mesh in w1 and w2 is refined on the order of 
16 times the original internal resolution starting at t1 = 6 s. This method is used to accelerate the convergence 
of the global solution. Experimental data from [19, 23] and a reference simulation having 3M cells are used 
to validate the computation. The drag coefficient Cd is a characteristic of the forces induced by the flow over 
the cylinder. It is compared against numerical data from the 3M cells benchmark, and against experimental 
data in [19, 23] where the averaged value for drag is Cd = 2.1 in Fig. 5. It can be seen that all of our 
numerical results are in agreement with experimental data. 

The amplitudes for the drag signal are oscillating around the value of 2.1, in agreement with the 
experimental data. This means that the physics of the unsteady phenomenon in our simulations is captured 
correctly. Without mesh refinement, the average value for the drag coefficient on the 200k mesh stays below 
2. The first 6 seconds are used in order to reach the unsteady phenomenon. Unsteady numerical simulations 
produce large amounts of result data, and it is common practice for the industry to compress these results. 
The proposed method is tested on the two ROIs w1 and w2 between t1 = 6 s and t2 = 7 s by capturing the inter-
processor traffic between w1 and w2, at one hand, and the rest of the computational domain, on the other.  

The efficiency of TRC is compared against state of the art algorithms and tools using Table 1, by 
compressing the internal fields of the ROI from t1 = 6 s to t2 = 7 s at all time steps ∆t selected in our 
investigation. The compression effect is measured by compression ratio (CR) defined by equation (5) while 
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the saved space metric (S) is given by following equation S = 1 – CR. As a result, the algorithm efficiency is 
directly proportional with the saved space metric (S) and inversely proportional with the compression ratio 
(CR). 

C(incomig traffic)CR= 100.
F(data inside the ROI)

×
 

(5)

 
Fig. 5 – Validation of the numerical results against experimental data. 

ZIP and GZIP are tools based on the Lemper-Ziv algorithm [2]. The main difference between them is 
that ZIP compresses collections of files independently of each other, even when there are many files in the 
same archive. GZIP on the other hand relies on external programs for archiving, like the popular unix tape 
archiver. This particularity enables it to produce better results than ZIP by exploiting the existing redundancy 
spread across multiple files. Because a unix ".tar" file was used for compression in both cases, ZIP and GZIP 
produce indistinguishably similar results in our tests. The other tools support their own version of file 
archives, but the difference in compression ratio is negligible. BZIP2 is based on the popular Partial 
Prediction Matching algorithm [24]. It is slower but usually yields better results than Lemper-Ziv. The 7Zip 
application uses Lemper-Ziv with Markov chains extension, and comes with a large number of compression 
schemes [25]. And finally RAR is a proprietary algorithm developed by Eugene Roshal - it combines Partial 
Prediction Matching [3] with a variation of the Lemper-Ziv algorithm published by Storer and Szymanski 
[26]. 

Table 1 

Comparison TRC against different algorithms 

 ∆t (s) Size (Gb) (%) TRC BZIP2 GZIP ZIP 7ZIP RAR 

Compression ratio 18.7 97.11 94.65 94.65 88.47 90.12 
w1 1e-3 243 

Saved spaced 81.3 2.89 5.35 5.35 11.53 9.88 
Compression ratio 16.6 97.06 94.78 94.78 88.92 90.22 

1e-3 307 
Saved spaced 83.4 2.94 5.22 5.22 11.18 9.18 

Compression ratio 24.5 96.77 95.16 95.16 88.70 88.70 
5e-3 62 

Saved spaced 75.5 3.23 4.84 4.84 11.30 11.30 
Compression ratio 37.0 96.77 96.77 96.77 90.32 90.32 

w2 

1e-2 31 
Saved spaced 63.0 3.23 3.23 3.23 9.68 9.68 
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Fig. 6 plots the data in Table 1 by 
connecting the saved space metric S with the 
size of the uncompressed data. It can be 
observed that the proposed method leads to a 
more efficient handling of the storage space. 
This happens because TRC has been designed 
with very specific scenarios in mind regarding 
how the result data is used.  

The efficiency of TRC increases as the 
size of the uncompressed data grows. This 
trend gives TRC a clear advantage when large 
scale simulations are deployed. On the other 
hand, the efficiency of the generic algorithms 
shows a constant evolution regarding the space 
savings obtained. Their performance stales at 
60 Gb of data. This happens because they have 
not been designed with very large volumes of 
data in mind, and consequently are not 
appropriate for parallel numerical simulations. 

5. CONCLUSION 

This paper introduced a highly efficient method for data handling of parallel numerical simulation 
results. The topic is a key problem in modern high performance computing. TRC involves the interception of 
parallel inter-processor traffic into a storage file, and the later replay of this traffic in order to reconstruct the 
internal fields inside one or more ROIs defined by the user. The solution was applied on a well known CFD 
benchmark. Experimental data and a high resolution simulation were used for the validation of the numerical 
analysis. The implementation was developed on top of OpenFOAM®, an opensource CFD platform. Several 
compression algorithms were used on the same benchmark to assess the space savings efficiency of TRC 
(including ZIP [2] and RAR [3]). Our method called TRC delivers space savings within the range of  
63–83.4%, an order of magnitude higher than the classic compression algorithms. This happens because 
TRC takes advantage of how the data was generated and what it is used for in the first place. The space 
savings obtained by the competitors stay below 10%. Another important finding is that the efficiency of TRC 
grows when the size of the uncompressed data gets bigger. This happens while the efficiency of the other 
algorithms stales to a constant limit. The obtained results bring new perspectives to attention regarding data 
handling techniques for parallel numerical simulations, and can be easily reproduced in other sciences. 
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