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In this paper we investigate the transport equations in fractal porous media by using the fractional 
complex transform method. The local fractional linear and nonlinear transport equations with local 
fractional time and space fractional derivatives are obtained. The proposed models adequately 
describe the fractal transport processes. 
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1. INTRODUCTION 

Fractal porous materials [1] such as wool fibers [2-3], multi-scale fabric products [4], polar bear hairs 
[5] and air permeability [6] are described within the framework of fractal transport phenomena [7]. The 
classical transport phenomena have applications in several areas, e.g., the turbulence [8], the two-valley 
semiconductors [9], the QCD gluon Wigner operator [10], the clean superconductors [11], the aeronomy 
[12], the superconductors [13], the resting phases [14] and so on.  

In recent decades the fractional calculus and its applications started to be one of the main directions for 
several researchers [15–19]. The fractional transport phenomena were reported (see [20–27] and the 
references therein). Based on Levy stable processes, fractional transport equations were reported [20]. 
During the last decade the anomalous transport with fractional operator was considered [21–22] and the 
hyperbolic transport equations were investigated [23]. Recently, the fractional diffusion models of nonlocal 
transport were addressed [24] and the transport problems in disordered semiconductors were investigated in 
[25]. Very recently the Walsh function method fractional transport equation was reported [26] and the 
solution of the fractional transport equation was analyzed within the generalized quadratic form [27].   

As it is known the local fractional derivative and integration are set up on fractals [28–48]. Several 
definitions of local fractional derivatives were reported (see for example [28–48] and the references therein). 
The generalized local fractional derivatives were investigated in Refs. [28–29, 37–41]. Based on local 
fractional derivatives, the fractional complex transform method (also called fractal complex transform 
method) was proposed in [34–35]; it is a natural extension of the fractional complex transform method [41–50] 
originally proposed for the modified R-L fractional derivatives.  

In this manuscript we will convert the conventional transport equations into the transport equations 
with local fractional derivatives by using the fractional complex transform method. The structure of the 
manuscript is given below. In Section 2, we investigate the transport equations in fractal porous media by 
using the fractional complex transform method. In Section 3 we briefly give our conclusions. 
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2. THE TRANSPORT EQUATIONS IN FRACTAL POROUS MEDIA 

In this section, we derive the local fractional transport equations containing both local fractional time 
and space derivatives. 

2.1. Local fractional linear transport equation 

According to the theory of characteristics, the linear transport equation is [51] 

( ) ( ) ( ) ( ) ( ), , , , , , , , , , , ,
, , , 0

M X Y Z T M X Y Z T M X Y Z T M X Y Z T
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+ + + = ∂ ∂ ∂ ∂ 
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The fractional complex transform method was applied to switch the conventional differential equations into 
local fractional differential equations [34-35]. Now we can derive the fractional complex transform  

( ) ( ) ( ) ( )
   ;      ;      ;   
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Using the factional complex transform (2), we have  
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Hence, we arrive at the following equation 

( ) ( ) ( ) ( ) ( ), , , , , , , , , , , ,
, , , 0

M x y z t M x y z t M x y z t M x y z t
a x y z t

t x y z
 ∂ ∂ ∂ ∂

+ + + = ∂ ∂ ∂ ∂ 

α α α α

α α α α . (7) 

Remark 1. We observe that Eq. (1) is equivalent to Eq. (7) under the constraint of Eq. (2). In a similar 
manner, we can prove that Eq. (7) is equivalent to Eq. (1) under the constraint of Eq. (2) if the local 
fractional partial derivatives exist (see A1). 

2.2. Local fractional nonlinear transport equation 

For a given special case of Ref. [52] a parameterized quadratically nonlinear transport equation reads 
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where a  and b  are two real constants.  
By the factional time and space complex transform (2), we have  
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Thus Eq. (8) becomes  
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Remark 2. In view of Eqs. (7, 12), we find the one-dimensional linear transport equation  
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and the one-dimensional nonlinear transport equation  
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This result was obtained with the help of the fractional complex transform [34-35]:  

( ) ( )
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Remark 3. Due to Eq. (2), the phase space of Eqs. (7, 12) is a fractal space, with its dimension being 
α . We notice that the fractal dimensions of the phase spaces of Eqs. (7, 12) are equal to 3α  and the three 
phase spaces are orthogonal to each other, fulfilling the condition [28]  

( )dim dim dim dimH H H HE F G E F G× × = + + , (16) 

which leads to  

dim dim dimH H HE F G= = =α  (17) 

in the three-dimensional fractal system. Here E  and F  are subsets of R . E and F are fractal sets, 
X E∈ ,Y E∈  and Z E∈ .  

Remark 4. Here, the fractal porous medium is described by ( ), , ,M x y z t  such that [28],  

( ) ( )0 0 0, , , , , ,M x y z t M x y z t− < αε . (18) 

Hence, the fractal dimension of the fractal porous medium is 3α . From Eq. (18), we conclude that [28]  

( ) ( )1 0 0 2 0, , , , , ,C x x M x y z t M x y z t C x x− ≤ − ≤ −α α , (19) 

( ) ( )3 0 0 4 0, , , , , ,C y y M x y z t M x y z t C y y− ≤ − ≤ −α α , (20) 

( ) ( )5 0 0 6 0, , , , , ,C z z M x y z t M x y z t C z z− ≤ − ≤ −α α , (21) 

where 1 2 6, , ,C C C  are constants.  
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3. CONCLUSIONS  

In this paper we started with the classical linear and nonlinear fractional transport equations and end up 
with the local linear and nonlinear fractional transport equations on fractal domain. The obtained equations 
have local fractal property. In our work the fractal porous material is described by a local fractional 
continuous function. The corresponding fractal dimension is provided by the porous material. Thus, we 
conclude that the developed transport equations efficiently describe the local fractal behaviors of fractal 
porous materials. 
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APPENDIX A 

Local fractional partial derivatives of ( ), ,f x y z  at the point 0x  are given by [28–29]  
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with ( ) ( ) ( ) ( ) ( )0 0, , , , 1 , , , ,f x y z f x y z f x y z f x y z∆ − ≅ Γ + −      
α α , and the 2α  local fractional partial 

derivative is [28] 
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The expressions of the high order local fractional partial derivatives of local fractional continuous 
functions can be found in Refs. [28, 29].  
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