
      THE PUBLISHING HOUSE  PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, 
      OF THE ROMANIAN ACADEMY  Volume 14, Number 4/2013, pp. 276–280 

EQUILIBRIUM PROBLEMS OVER PRODUCT SETS 

Miruna BELDIMAN 

Institute of Mathematical Statistics and Applied Mathematics of the Romanian Academy,   
Calea 13 Septembrie nr. 13, 050711, Bucharest, Romania  

E-mail: miruna.m@gmail.com 

Some types of equilibrium problems and systems of equilibrium problems on cones are studied.  For 
these, we obtain equivalence results and prove, using a fixed - point theorem of Chowdury and Tan, 
existence results. 
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1. INTRODUCTION 

The equilibrium problems were introduced in [7] and [11]. After that, systems of equilibrium problems 
were first considered in [3]. Since then, many different classes of such systems were studied [1, 2, 4, 5]. 
Here, we present some new classes of equilibrium problem systems over product set. These results represent, 
in a certain sense, a generalization of those obtained in [6] for variational inequalities over product sets. 

2. FORMULATION OF EQUILIBRIUM MODELS AND SOME PRELIMINARY RESULTS 

Let { }mI ,,2,1 …=  be a finite index set and iX , for each Ii∈ , be a real topological vector space, 

with iK  a nonempty convex subset. We put ∏
∈

=
Ii

iXX  and ∏
∈

=
Ii

iKK . For ii Xx ∈ , Ii∈ , we denote 

( ) Xxx Iii ∈= ∈ . For a real topological vector space Y , let C  be a proper, closed and convex cone with 

Øint ≠C , where Cint  denotes the topological interior of C  in Y . Thus we consider Y  to be a partial 
order wrt Ccone . 

Let for each Ii∈ , an arbitrary set iY  and ii YKf →: . Also we define for each Ii∈ , a map 

YKKY iiii →××Ψ :  and iK
i KA 2: →  be a multivalued map with nonempty convex values. We put 

( ) Iiiff ∈= , ( ) Iii ∈Ψ=Ψ  and define a multivalued map ( ) ( )∏
∈

=
Ii

i xAxA . 

Now we consider the following vector equilibrium problems over the product set K : 
(Ψ - VEP) find Kx∈  such that ( )xAx∈  and 

( )( ) Cyxxf
Ii

iiii int;, −∉Ψ∑
∈

, ( )xAy ii ∈∀ , Ii∈ ; 

and the Minty type vector equilibrium problem  
(Ψ - MVEP) find Kx∈  such that ( )xAx∈  and 

( )( ) Cyxyf
Ii

iiii int;, −∉Ψ∑
∈

, ( )xAy ii ∈∀ , Ii∈ . 
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Also, we consider the Stampacchia type system of vector equilibrium problems: 
(Ψ - SVEP) find Kx∈  such that ( )xAx∈  and 

( )( ) Cyxxf iiii int;, −∉Ψ , ( )xAy ii ∈∀ , Ii∈ . 

We denote by sK , m
sK  and ssK  the solution sets of (Ψ - VEP), (Ψ - MVEP) and (Ψ - SVEP), 

respectively. 
In the following we introduce some classes of mappings which extend the ones of relatively 

pseudomonotony, relatively maximal pseudomonotony and hemicontinuity. Further, some basic results 
relatively to this classes are stated. 

Definition 2.1. The family { } Iiif ∈  is  
(i)  relatively pseudomonotone wrt Ψ  if for all Kyx ∈,  we have  

( )( ) ( )( ) CyxyfCyxxf
Ii

iiii
Ii

iiii int;,int;, −∉Ψ⇒−∉Ψ ∑∑
∈∈

; 

(ii) relatively maximal pseudomonotone wrt Ψ  if it is relatively pseudomonotone wrt Ψ  and for all 
 Kyx ∈,  we have 

( )( ) Czxzf
Ii

iiii int;, −∉Ψ∑
∈

, ( ]yxz ,∈∀ ( )( ) Cyxxf
Ii

iiii int;, −∉Ψ⇒∑
∈

, 

where ( ] ( ]∏
∈

=
Ii

ii yxyx ,, . 

Definition 2.2. The family { } Iiif ∈  is hemicontinuous wrt Ψ  if for all Kyx ∈,  and [ ]1,0∈λ , the 

mapping ( )( )( )∑
∈

−+Ψ
Ii

iiii yxxyxf ;,λλ  is continuous. 

Now we consider some relation between the sets sK , ssK  and m
sK . 

LEMMA 2.1. We suppose the family { } Iiif ∈  is hemicontinuous wrt Ψ  and for each Ii∈ , 
( )( ) 0;, =Ψ iiii xxxf  for any Kx∈ . Then sss KK ⊆ . 

Proof. Let sKx∈ . Now we see that ( )xAx ii ∈  for all Ii∈ , then ( ) ( )xAxx Iii ∈= ∈ . Since 

( )xAx∈  we have that also y  defined by ii xy =  with arbitrarily fixed Ii∈  and jj xy =  for each ij ≠  

is an element of sK . Using hemicontinuity and sequentially substituting y  in (Ψ - VEP), with 

ni ,,2,1 …= , we get that x  is a solution of (Ψ - SVEP), i.e, ssKx∈  and lemma is proved. 

LEMMA 2.2. We suppose  
(i)  the family { } Iiif ∈  is relatively maximal pseudomonotone wrt Ψ ; 
(ii) for each Ii∈ , iA  is nonempty and convex-valued map. 

Then m
ss KK = . 

Proof. Using the assumption of relatively pseudomonotonicity wrt Ψ , we get easily that m
ss KK ⊆ . 

Now let m
sKx∈ . Then ( )xAx∈  and 

( )( ) Cyxyf
Ii

iiii int;, −∉Ψ∑
∈

, ( )xAy ii ∈∀ .   (2.1)

But we have that ( ] ( )xAyx iii ⊂,  for any Ii∈ . Hence by (2.1) we obtain 

( )( ) Czxzf
Ii

iiii int;, −∉Ψ∑
∈

, ( ]iii yxz ,∈∀ , Ii∈  
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Now using again relatively pseudomonotonicity, we obtain 

( )( ) Cyxxf
Ii

iiii int;, −∉Ψ∑
∈

, ( )xAyi ∈∀ , Ii∈ , 

i.e., sKx∈  or s
m
s KK ⊆ . Thus the proof is complete. 

Definition 2.3 [8]. A subset B  of a topological space E  is said to be compactly open (respectively, 
compactly closed) in E  if, for any nonempty compact subset D  of E , DB ∩  is open (respectively, 
closed) in D . 

THEOREM 2.1 [8]. Let K  be a nonempty convex subset of a topological vector space (not necessarily 
Hausdorff) E  and let KKTS 2:, →  be multivalued maps. Assume the following conditions hold: 

( 1a ) For all Kx∈ , ( ) ( )xTxS ⊆ ; 
( 1b ) For all Kx∈ , ( )xT  is convex and ( )xS  is nonempty; 
( 1c ) For all Ky∈ , ( ) ( ){ }xSyKxyS ∈∈=−1  is compactly open (i.e. for any nonempty compact 

subset 
 D  of E , ( ) DyS ∩−1  is open in D ); 

( 1d ) There exist a nonempty closed compact ( not necessarily convex) subset D  of K  and a Dy ∈~  
such that ( )yTDK 1\ −⊂ . 

Then, there exists Kx∈ˆ  such that ( )xTx ˆˆ∈ . 

3. MAIN RESULTS 

Let for each Ii∈ , iX  be a real topological vector space, Y , C , iK , iA  for Ii∈ , K  and A  defined 

as in Section 2. Further we assume that for each Ii∈  and for all ii Ky ∈ , ( )ii yA 1−  is compactly open in 

K , and the set ( ){ }xAxKx ∈∈=F  is compactly closed. 
 
THEOREM 3.1. We assume 
( 1i ) the family { } Iiif ∈  is relatively maximal pseudomonotone wrt Ψ ; 
( 2i ) there exist a nonempty closed and compact set D  of K  and Dy ∈~  such that 

( )( ) Cyxxf
Ii

iiii int~;, −∈Ψ∑
∈

, for DKx \∈  with ( )xAy ∈~ ; 

( 3i ) the mapping ( )( )∑
∈

Ψ
Ii

iiii yxxfy ;,  is quasi convex on K  for any Kx∈ ; 

( 4i ) ( )( ) 0;, =Ψ∑
∈Ii

iiii xxxf , Kx∈∀ . 

Then Ø≠sK  and Ø≠ssK .  

Proof. The proof of this theorem is based on Theorem 2.1. In order to do this, we construct two 
applications S  and T  that satisfy the hypotheses of the above mentioned theorem. 

Let the multivalued maps KKTS 2:, →  given by 

( ) ( ) ( )( )

( )







∈

∈








−∈Ψ∈∩
= ∑

∈

F

F

\if

ifint;,

KxxA

xCyxyfKyxAxS Ii
iiii  
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    and 

     ( ) ( ) ( )( )

( )







∈

∈








−∈Ψ∈∩
= ∑

∈

F

F

\if

ifint;,

KxxA

xCyxxfKyxAxT Ii
iiii . 

 If KKQP 2:, →  are given by 

( ) ( )( )








−∈Ψ∈= ∑
∈

CyxyfKyxP
Ii

iiii int;,  

              and 

( ) ( )( )








−∈Ψ∈= ∑
∈

CyxxfKyxQ
Ii

iiii int;,  

     then we have  

( ) ( ) ( )
( )





∈
∈∩

=
F
F

\if
if
KxxA

xxPxA
xS    and    ( ) ( ) ( )

( )





∈
∈∩

=
F
F

\if
if
KxxA

xxQxA
xT . 

By ( 3i ) we get that for each Kx∈ , ( )xQ  is convex and then by ( 1i ) we obtain ( ) ( )xQxP ⊆  for any 
Kx∈ . 

 Since for each Ky∈  the complement of ( )yP 1−  in K  is given by 

( )[ ] ( )( )








−∉Ψ∈= ∑
∈

− CyxyfKxyP
Ii

iiii
c int;,1  

is a closed set in K , we have that the set ( )yP 1−  is an open set in K . Thus, the set ( )yP 1− , for any Ky∈ , 
is a compactly open set. 
 Also we see that ( )xA  is a nonempty convex set. Since for any Ii∈  and ii Ky ∈ , ( )ii yA 1−  is 

compactly open set, then ( ) ( )∩
Ii

ii yAyA
∈

−− = 11  is a compactly open set in K  for all Ky∈ . 

 Thus, for all Kx∈ , ( )xT  is a convex set with ( ) ( )xTxS ⊆ , i.e., ( 1a ) and the first condition of ( 1b ) from  

 THEOREM 2.1. According to [9], Lemma 2.3, we have 

( ) ( ) ( )( ) ( ) ( )( )yAKyPyAyS 1111 \ −−−− ∩∪∩= F . 

Now, since for each Ky∈ , ( )yA 1− , ( )yP 1−  and F\K  are compactly open sets, then the set 
( )yS 1−  is compactly open (see [10]), i. e. ( 1c ) from Theorem 2.1 hold. 

Now we prove that there exists F∈x , ( ) ( ) Ø=∩ xPxA . In order to do this, we suppose that 
( ) ( ) Ø≠∩ xPxA  for all F∈x . Hence ( ) Ø≠xS  for all Kx∈ , i.e., ( 1b ) from Theorem 2.1 is true. 

Finally, we observe that ( 2i ) is equivalent with ( 2d ) from the same theorem. Therefore we can apply this 

result. Thus, there exists Kx ∈0  such that ( )00 xTx ∈ . Because 
( ){ } ( ){ } F=∈∈⊆∈∈ xAxKxxTxKx , we get F∈0x  and ( ) ( )000 xQxAx ∩∈ . But ( )00 xQx ∈  

implies that 
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( )( ) Cxxxf
Ii

ii int;, 000 −∈Ψ∑
∈

, 

which contradicts ( 4i ). 

Therefore, there exists F∈x  with ( ) ( ) Ø=∩ xPxA . This statement is equivalent with ( )xAx∈  and 

( )( ) Cyxyf
Ii

iiii int;, −∉Ψ∑
∈

, ( )xAy ii ∈∀ , Ii∈ , i.e., m
sKx∈  and by Lemma 2.2 we get sKx∈ . 

Finally, from the above result and from Lemma 2.1, we obtain Ø≠∈ ssKx , and the theorem is 
proved. 
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