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In this paper we introduce and study some properties for a new class of linear operators 
namely 2( )v

wB . We characterize some special classes of this kind of matrices and we prove some new 
results concerning Schur multipliers. In particular, we prove that the space of Schur multipliers from 

2( )v
wB  to 2( )v

wB  contains all matrices which represent bounded operators from 2 into ∞ . 
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1. INTRODUCTION 

In this paper we introduce a new class of Banach space of infinite matrices and we state and prove 
some properties of this space. On one hand we introduce this space motivated by the previous papers [3, 4, 
[5, 9, 10], on the other hand for the potential to apply some results of positive operators on cones in economy 
(see e.g. [1, 2]). 

The space )( 2
wB  consisting of infinite matrices A  such that 2)( ∈xA  for every 2)(= ∈nnxx  

with 0|| ↓nx  has been studied in [9] and also in [10]. This space can be regarded as a "weak" variant of the 

classic space )( 2B  since consists in those matrices which apply the decreasing sequences in absolute value 

from 2  in 2 . More precisely, this space was introduced by N. Popa and has been appeared in the study of 
matricial analogue of Fejer's theory. The analogue of Fejer's theory in the framework of infinite matrices can 
be found in [4]. In our present paper we generalize this space and this represents another motivation to study 
this space. 

Let ( ) 1≥nnv  be a sequence of nonnegative real numbers. We define a space of infinite matrices denoted 
by    

2 2={  infinite matrix;  for everyv
wB ( ) A Ax∈ 2 | |

= ( ) ,  with 0}.n
n n

n

x
x x

v
∈ ↓   

On this space we consider the following norm 

( )2
/

2

( )
2

supv
x vw n nB

Ax
A

x↓
= .  

It is clear that the space )( 2v
wB  is a Banach space with the above norm. Moreover )(=)( 22

w
v
w BB , when 

1=nv  for every 1≥n . 
We define now the Schur product of two matrices (finite or infinite) 
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( ) ,=
1, ≥

⋅∗
jiijij baBA   

where ( ) ( ) .=,=
1,1, ≥≥ jiijjiij bBaA  We denote by  

( ) ( ) ( ){ } every for  : = 222 BABAMMM ∈∈∗   

the space of Schur multipliers which is a Banach space with the norm  

.sup=
)2(

1)2(
B

BA
AMM ∗

≤

  

For an infinite matrix )(= ijaA  and an integer k , we denote by )(= ijk aA ′ , where  

if = ,
=

0 otherwise,
ij

ij

a j i k
a

−′ 


  

kA  is called Fourier coefficient of thk  order associated to matrix A  (see e.g. [4] and [3]). 
For the convenience of the reader we present a theorem which can be found e.g. in [7]. The theorem is 

the analogy for 1<0 ≤p  of Sawyer’s duality principle (see [6] and [11]).  
 

THEOREM 1.1.  Let nnww ))((= , nnvv ))((=  be two weights in *  and let  

.
))()((

)()(
sup= 1

0=

0=

0 pp

n

n

f
nwnf

nvnf
S

∑

∑
∞

∞

↓
  

If 1<0 ≤p , then  

,
)(

)(sup= 1
0

nW

nVS
pn≥

  

with W  defined by )(=)(
0=

kwnW n

k∑ , 0,1,2,...=n  and V  defined in the same way. 

 
The paper is organized as follows. In Section 2, the main result is a characterization of diagonal 

matrices from )(B 2v
w . Another result is the coincidence of the spaces )( 2v

wB  and )( 2B  in the case of 
Toeplitz matrices. Finally, in the last Section, we state and prove some results concerning Schur multipliers. 
For instance, we prove that matrices that represents boundend operators from 2  into 2  are Schur 
multipliers from )(B 2v

w  to )(B 2v
w . 

2. PARTICULAR CASES OF INFINITE MATRICES 

We start this Section by giving a characterization of diagonal matrices in )( 2v
wB . 

 
THEOREM 2.1. Let nnvv )(=  be a monotone weight and the matrix 0= AA  given by the sequence 

nnaa )(= . Then  
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Moreover the norm is  

.
v

v|a|
sup=A
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Proof. We will compute the term 
2

2
||sup

x
Ax

nv
nx
↓ . We have that  

1 1
2 2

2 2 2

2 =1 =1
1 1

| | | | | |2 2 2
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=sup sup sup
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Applying Theorem 1.1 with 1=p , 2|=|)( nynf , 22 ||=)( nn avnv , 2=)( nvnw  we obtain for every n ,  
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The proof is complete.  
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Remark 2.2. We remark that for every weight nnvv )(=  the following inclusion holds  

).()( 22 v
wBB ⊆  (1)

When nnvv )(=  is bounded, it is clear that the inclusion (1) is proper. Next we give an example of 

unbounded weight such that the inclusion is also proper. For instance, if we take αnvn =  with 0>α  and 
consider the matrix 0A=A  given by the sequence kkaa )(=  where  





 −

−

,otherwise0,
2= if,2= 2

1
p

p

k
ka

α

  

making easy calculations we get that ∞<
)2(v

wB
A  but the sequence kkaa )(=  is unbounded. This means 

that )( 2BA∉ .  
Although we remarked that in general, the spaces )( 2B  and )( 2v

wB  are different, in the case of 
nondecreasing sequences these spaces coincide if we restrict to Toeplitz matrices.  

 
THEOREM 2.3. Let nnvv )(=  be a nondecreasing weight. Then  

,)(=)( 22 TT ∩∩ v
wBB   

where T∩)( 2B  and T∩)( 2v
wB  represent the sets of Toeplitz matrices from )( 2B  respectively 

)( 2v
wB .  

 
Proof. By definition we have the following inclusions:  

).()()( 222
w

v
w BBB ⊆⊆  (2)

It has been proved that in the case of Toeplitz matrices )( 2B  and )( 2
wB  coincide (see Theorem 9 from 

[9]). 
Thus, using the Theorem mentioned before and the inclusions (2) it follows that )( 2B  and )( 2v

wB  
coincide. The proof is complete.  

3. SCHUR MULTIPLIERS 

It is well known that the classical space )( 2B  is closed under Schur multiplication (see e.g. [5]), 
although )( 2

wB  in not (see e.g. [9]). It is easy to see that )( 2v
wB  is also not closed under Schur 

multiplication. For example, we can use the matrix 0A=A  from Remark 2.2. Using Theorem 2.1 and easy 
computations we can observe that A*A is not in )( 2v

wB , when αnvn =  with 0>α . However, all infinite 

matrices from )( 2B  are Schur multipliers from )( 2v
wB  in )( 2v

wB . 
 

THEOREM 3.1. Let ))(),(( 22 v
w

v
w BBM  be the space of Schur multipliers from )( 2v

wB  to )( 2v
wB . 

Then we have that:  

)).(),((),( 222 v
w

v
w BBMB ⊂∞   
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Proof. Let us take arbitrary ),( 2 ∞∈BA  and )( 2v
wBB∈ . Then the following inequalities hold: 

( )
2

2 2 2 2

2 2 2

| | | || || | | | | | | |

                                            | | | | | | .sup

jk jk k jk jk k jk jk k
j k j k j k k

jk jk k
j k j k

a b x a b x a b x

a b x

   
≤ ≤ ≤   

   

   
≤    

   

∑ ∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑
 (3)

For estimating the last term from (3) we will use Rademacher functions )(2sin=)( tsgntr n
k π  on 

[0,1], for 1≥k  (see e.g. [8] p. 126) 

12 2
0

| | = | ( ) | d .k k k
k k

z z r t t∑ ∑∫   

It follows that  

1 2 22 2 2 2
2[0,1] ( ) 20

| | | | = | ( ) | d esssup | ( ) | .vjk k jk k k t jk k k Bwj k j k j k
b x b x r t t b x r t B x∈

 
≤ ≤ 

 
∑ ∑ ∑ ∑ ∑ ∑∫   

Thus we have that 

,*
)2(2,)2( v

wBv
wB

BABA ⋅≤
∞

  

the required inclusion holds and the proof is complete.  
 

COROLLARY 3.2. Let ))(B),(B(M 2v
w

2v
w  be the space of Schur multipliers from Theorem 3.1. Then 

we have that ))(B),(B(M)(B 2v
w

2v
w

2 ⊂ .  

Proof. The inclusion results immediately from the above theorem and from inequality 

)2(2, B
AA ≤

∞
.  

The following result is in fact a characterization of diagonal matrices which are multipliers from 
)( 2v

wB  in )( 2v
wB . 

 
THEOREM 3.3. Let us take 0= BB  given by the sequence 1)(= ≥kkbb . Then we have that 

))(),(( 22 v
w

v
w BBMB∈  if and only if 1)(= ≥kkbb  is bounded.  

Proof. First we prove for matrices with positive entries. 
Let ))(),(( 22 v

w
v
w BBMB∈ , then ),(* 2v

wBAB ∈  for every )( 2v
wBA∈ . In particular, 

),(* 2
0

v
wBAB ∈  where 0A  represents a diagonal matrix given by 1)(= ≥kkaa . Thus, we have that 

0.||such that  every for  22
0 ↓∈∈

k

k

v
xxxA  Since 2

0 )*( ∈xAB  it follows .)(= 1
∞

≥ ∈kkbb  

For sufficiency we assume that 1)(= ≥kkbb  is a bounded sequence of real numbers. We claim that  

 ,
)2()2(0 v

wBv
wB

AA ≤  (4) 

for every matrix )( 2v
wBA∈ . 

Then we have  
2 2 2 2 2 2 2 2 2 2 2

2 20 0 0 02 2 2 2 ( ) 2 ( ) 2
( * ) = ( * ) = ,v vB Bw w
B A x B A x BA x b A x b A x b A x

∞ ∞ ∞
≤ ⋅ ≤ ⋅ ⋅ ≤ ⋅ ⋅  (4)
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for every 2
1)(= ∈≥kkxx  such that 0||

↓
k

k

v
x

. 

In the case of positive matrices the proof is complete since the inequality (4) is trivial in these settings. 
In the general case, for proving (4) we can use Rademacher functions. Using the same arguments as in the 
proof of Theorem 3.1, where kr  for 1≥k , are Rademacher functions, we have that  

2 2
12 2 22 2

20 [0,1]2 ( ) 20
= | | | | = ( ) d esssup ( ) ,vkk k jk k jk k k t jk k k Bwk j k j k j k

A x a x a x a x r t t a x r t A x∈≤ ≤ ≤∑ ∑∑ ∑ ∑ ∑∑∫
 

for every 2
1)(= ∈≥kkxx  with 0||

↓
k

k

v
x

. Thus the inequality (4) is proved and the proof is complete.  

COROLLARY 3.4. In the case of diagonals )( 2M  and ))(( 2v
wBM  coincide.  

Proof. The result follows from the characterization of diagonals from )( 2M  and the previous 
theorem.  

 
In the last theorem of this Section we prove that in the case of Toeplitz matrices, the multipliers from 
)( 2v

wB  into )( 2v
wB  are Schur multipliers on )( 2B .  

 
THEOREM 3.5. For all Toeplitz matrices the following inclusion holds:  

).())(),((=))(( 2222 MBBMBM v
w

v
w

v
w ⊆   

Proof. The proof is based on the Theorem 8.1 from [5]. Let = ( )jk jkM m  be a Toeplitz matrix of the 
form  

= , , = 0,1, 2,jk j km c j k−  (5) 

such that ))(( 2v
wBMM ∈ . Using Theorem 2.3 it follows that there exists a complex Borel measure µ  on 

the unit circle such that 

ˆ ( ) =  for = 0, 1, 2, .nn c nµ ± ±   

Moreover,  

.
))2(( v

wBM
M≤µ   

Applying Theorem 8.1 from [5] it follows that Toeplitz matrix (5) is in )( 2M . The proof is complete.  
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