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This work reviews some important issues in natural computing that are of interest for cryptology. In 
particular we focus on our recent results in defining a particular class of hybrid cellular automata 
(HCA) with 5 cells neighbourhood as discrete-time chaotic maps, with very good cryptographic 
properties. Such structures are better alternatives to other chaotic maps since they are using the 
hardware resources with a maximal efficiency and have no transient times associated to the 
convergence to the main cycle.  Based on the algebraic normal form (ANF) representation of the 
HCA-rule it is proved that our HCA are in fact nonlinear feedback shift registers NLFSR, recently 
gaining increasingly interest for cryptographic applications (such as stream ciphers). It is shown that 
the FPGA resources are optimally allocated as a consequence of using the ANF representation of 
cells.  
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1. INTRODUCTION 

Cryptology applications may be successfully approached by applying certain natural computing [1] 
techniques. Particularly, in this work we focus on a particular class of nonlinear dynamic systems inspired 
from nature; namely, the cellular automata. Cellular automata fit in the more general network model 
represented in Fig.1. At its very fundamental level (mathematical description) the network is a nonlinear 
dynamic system. Cells are associated with state variables (scalars or grouped in a vector structure) while 
connectivity links represent (nonlinear) functional relationships between states. These functional 
relationships include a certain number of parameters (the cell’s gene in Chua’s parlance [2], depicted as wij 
on links in Fig.1). Finding these parameters (as well as the functional expressions) such that the model fits 
specific goals represents the design tasks. For instance, two goals may be of interest in cryptology:  

i) Designing a network capable to generate pseudo-random sequences that are difficult to decode in 
case of attacks (in this case genes are tuned such that in the end the network respond properly to certain 
batteries of tests [3]. Often the nonlinear network is designed such that it generates chaotic sequences 
[4][5][6] but more traditional models such as linear and nonlinear feedback shift register (NLFSR) [7][8] and 
cellular automata CA [9] also fit in the same category;  

ii) Using partially available information from encrypted messages (as an intruder) and consider the 
nonlinear network as an adaptive one (e.g. using neural network paradigms) that is eventually capable to 
“decrypt” the structure behind a pseudo-random generator or a more sophisticated cryptographic system. 
This second goal is grounded on Takens’s embedding theorem [10] and further methods built upon it (for 
instance [11]). Takens theorem allows the creation of hidden state variables in a network model based on a 
limited (but large enough) set of past observations. Since the accuracy of the model is better for lower 
number of state variables in order to avoid decryption based on Takens theorem, an extremely large state 
space for the cryptographic sequence generator must be considered. From this perspective the low (1-
dimensional) logistic map (with no delay between transmitted samples, or other scrambling methods) is very 
fragile against attacks using Takens theorem [4]. On the other hand cellular automata CA were recognized as 
very good dynamic networks to generate cryptographic sequences since the number of their cells can be 
chosen as an arbitrarily large one.   
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Fig. 1 – A natural computing approach to problems in cryptology: 
a) generating good pseudo-random sequences to be exploited in 

cryptosystems; b) to identify and replicate cryptographic systems 
(attack problems) based on consecutive observables from an 

encrypted transmission (real-world crypto-system). 

Fig. 2 – General structure of a nonlinear map in a digital 
implementation (discrete-time, finite precision) and the main 

concepts associated with it. 

Mathematically, the nonlinear dynamic network is an ordinary differential equation (ODE) in the case 
of continuous time or a finite difference equation in the case of discrete time. In the next, we will focus only 
on discrete-time systems associated with their digital system implementations, ensuring reliable reproduction 
of identical networks as needed often at both transmitter and receiver.  

In this paper, recent results on identifying a large class of cellular automata with good cryptographic 
properties are exposed. Such systems may be further used in various cryptosystems as pseudo-random 
number generators. First, in section 2, a general model for the nonlinear dynamical system is presented using 
discrete-time and finite precision representation of state variables. Several performance descriptors are 
reviewed and introduced. Particularly we will stress on conservative systems (i.e. without transients) with 
maximal length cycle and good randomness (an equivalent of chaotic behaviour for the case of finite state 
space and discrete time). Section 3 presents basic notions of cellular automata, introducing the hybrid 
cellular automata (HCA) with 3 and 5 cells neighbourhoods. In Section 4 a methodology is given for 
representing local rules in algebraic normal form (ANF) and for the identification of all nonlinear HCA 
(HCA NLFSR) with very good cryptology properties. Properties and conclusions are also included here.  

2. DISCRETE-TIME NONLINEAR DYNAMICAL SYSTEMS AS CHAOTIC MAPS, 
PERFORMANCE DESCRIPTORS 

In the general case, a discrete-time nonlinear dynamic system is given by equation: ( ) ( )( )tFt xx =+1 , 
where x is a state variable.  The above is called a map and if the dynamic behaviour is chaotic the map is 
said to be chaotic. In recent year chaotic maps gained increased interest for applications in cryptology [5][6]. 
Quite often they are used to build cryptosystems where the underlying dynamical system is used as pseudo-
random number generator. A widely known example of a chaotic map is the one dimensional logistic map 
[12][13] where ( )xxF −= 1λ . From a practical perspective (digital implementation, where all state variables 
can be associated with a unique register with n bits) any nonlinear map can be associated with an automaton-
type as presented in Fig. 2. For instance, if the unique x state variable of the logistic map is implemented in a 
32-bits floating point representation the associated register in Fig. 2 has n=32 bits and the nonlinear function 
F is implemented as a combinational digital circuitry.  Often, in digital implementations fixed-point 
representations of the state variables are preferred since they ensure a better efficiency (less occupied 
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resources). In [14] an interesting comparative study of various chaotic maps using various sizes n with fixed 
or floating point implementations in FPGA is given. In [15] we show that the general structure of a digital 
implementation for a nonlinear map in Fig.2 includes cellular automata (CA) as particular case. Moreover, 
the CA have several advantages over nonlinear maps, such as the lack of transients (for certain kind of 
cellular automata called conservative CA), easiness of scaling to high dimensionality n (with direct 
implications for decreasing the probability of successful attack), better efficiency in hardware (e.g. FPGA), 
to name just a few.  More details about cellular automata as chaos generators and their design are given in 
Section 3. In the following we introduce the main performance descriptors and discuss them from the 
cryptology perspective. As a general rule, in cryptology we are interested to design systems with very long 
cycle length L (as close as possible to the maximal length i.e. nN 2= ), large state dimension n, and a 
“chaotic” character of the longest cycle, no transients, and an efficient and scalable VLSI implementation: 

Transients:  They are also called “ephemeral states” (Fig.2) since they are never visited twice during 
the dynamics of the system. Most chaotic maps reported so far have such transients and, to our knowledge 
there is no consistent theory to predict the transient length for a given system (although some useful 
computational evaluations were done in [13]). It is also clear that the initial state influences the transient 
length (i.e. the number of iterations until entering a cycle).  For cryptographic application is useful to avoid 
the existence of transients since they are not useful states and consequently their presence will diminish the 
“chaotic” cycle length (L<N) also requiring some lost cycles until entering the useful cycle. Recently [16] 
within the cellular automata framework, conservative CA was defined (it also apply to any network model in 
Fig.2) as those having the property that no state is a transient or ephemeral state. Both LFSR and NLFSR 
(linear feedback shift register) used for long as pseudo-random sequence generators have this property as 
well. The cellular automata in this paper are also conservative and consequently they have no transients. 

Cycle length (L): As seen in Fig.2 for different feedback functions F (parameters of F often represent 
the encryption key) different state space profiles are obtained. They consist of cycles of various lengths. 
Ideally, for cryptographic applications, the state space profile should be represented by a single cycle with 
the maximal length nNL 2== . In practice solutions where one very large cycle with NL ≅  coexists with 
several very small cycles are acceptable. The closest is NL /  to 1 the better. For practical reasons it is also 
convenient that a particular state (such as “all bits in 0”) is enclosed in the dominant cycle (the one with 
maximal length).  

Randomness (degree of chaos): A very long cycle is not necessarily a random one. A good counter-
example is the counting automaton (known as “counter” in digital circuit parlance). It has a maximal cycle 
length L=N but the transition from one state to the consecutive one is rather smooth, often only one bit is 
changing. Moreover, altering one bit in a counting state gives no dramatic influence on the trajectory. 
According to the classical chaos theory, a small change in the state variable must influence dramatically the 
values of the consecutive states (many different bits in our case). Since here we discuss about finite state 
space, the use of Lyapunov exponents (defined in the context of continuous state variables) is not suitable. 
Instead, in [17] we introduced a randomness measure that may be conveniently computed. It characterizes 
very well the randomness of any cycle. We are in particular interested by the randomness of the dominant 
cycle.  The measure of randomness was defined observing that in a “chaotic” automata the average Hamming 
distance between consecutive binary vector states (as given by the n cell outputs) becomes n/2 instead of 1 
for counters. Therefore, for any arbitrary cycle jC of length jL  a scattering coefficient jS  is defined by 
averaging the Hamming distances between all consecutive binary vector states in that cycle: 

( ) ( )∑∑
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where k is  the time index of consecutive states in the cycle j.  A degree of chaos jλ  is defined such that it 
becomes maximum if 5.0=jS  and zero for the extreme, non-chaotic cases of both fixed points and period 2 
cycles (with 0=jS  and 1=jS respectively):  

121 −−= jj Sλ  (2)
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The degree of chaos may be regarded as qualitatively similar to the Lyapunov exponent used in 
continuous-state systems to characterize chaotic behaviours. In our case its largest value is 1=jλ  indicates 
the highest degree of randomness in a finite-length cycle of an automata network. 

Efficiency of hardware utilization: Such a descriptor indicates: i) how many basic devices are needed 
to implement the feedback function F for a given n and ii) how well the state space is used (i.e. the ratio 
L/N). As shown in [15] usual chaotic maps (logistic in that case) would need far more hardware resources 
than hybrid cellular automata introduced first in [18]. For instance, according to [15] in the case n=32 , 1317 
LUTs (basic logic cells in FPGA) are needed while only 32 LUTs (in general n LUTs) are needed for the 
HCA101 cellular automata. On the other hand, the HCA101 has a far better utilization of the state space, for 
example, as shown in [15] in the case  n=21, 1122097151 21 −=−== NL  for HCA with ID=101 i.e. all states 
except 1 are included in the dominant chaotic cycle (also there are no transients) while for the same size n of 
the register the logistic map with 7.3=λ  (proved to be chaotic in floating point implementations) has the 
length of the dominant cycle only 883=L  (i.e. a fraction of only 0.0004 of all states), all other states 
belonging to transients! Such results indicate why it is desirable to consider a special case of cellular 
automata, the hybrid cellular automata (HCA) instead of (classical) chaotic maps. They are conservative 
maps and have the highest degree of randomness dominant cycle.  

3. HYBRID CELLULAR AUTOMATA 

Cellular automata have a long history of their use in cryptology. Many patents dealing with cellular-
automata based cryptographic systems are issued, (first patent on this issue [19]) and their study is the focus 
of many research papers (e.g. [9][20][21]). The cellular automata model fits the general model of a nonlinear 
map implemented as a digital system, each bit of the register being now associated to one cell and the 
feedback function F is now defined as a collection of n similar local (Boolean) functions acting in a 
neighbourhood of m cells. The reason why cellular automata are so popular in cryptology is the easiness to 
scale them to arbitrarily large n (as discussed above, a large size of the state space makes cryptographic 
attacks more difficult) due to the locality of the F mapping. Among the first cellular automata types that were 
widely investigated are the elementary cellular automata (ECA) [Wolfram 1983] where the neighbourhood 
size is m=3. Randomness was then associated with the evolution of cellular automata with rule (ID) 30, also 
adopted as random number generator in Wolfram’s “Mathematica”. Consequently, Chua [16] did an 
exhaustive research on all possible 256 ECA and introduced the concept of conservative cellular automata. 
As shown, the ECA with ID=30 is not a conservative cellular automata, consequently it has the transients.  In 
[16] it is shown that CA with odd number n of cells governed by rules ID = 45 (and its other 3 equivalents 
ID = 75,89, and 101) and the complemented outputs ID = 154 (or its equivalents, ID = 166, 180, 210) are the 
only non-linear rules leading to conservative dynamics with a high degree of complexity. Independently, in 
[17] we were able to show that in addition to this property, the cellular automata with ID = 45,75,89,101 
have very good randomness properties, although the lengths of the dominant cycle are not maximal for any 
n. In addition these automata networks allow synchronization between a transmitter and a receiver with 
identical structure using only 1 bit (binary synchronization), a feature that may be conveniently exploited 
particularly in communication systems. The good randomness and cryptographic properties of CA with 
ID=101 and it equivalents is confirmed in [9] using standard batteries of statistical tests [3]. Later, in [15] we 
introduced the concept of a hybrid cellular automata (HCA) demonstrating that for a proper choice of a mask 
vector of size n (complementing the outputs of some ID = 101 cells) one can maximize L such that it will 
reach a value very close to N (thus, improving the cryptographic properties of the random number generator 
[30]). Several applications were proposed [22][23], particularly interesting is the one in [23] where such a 
HCA is used as “chaotic counter”  to scan a video sensor leading to a very compact yet versatile system 
which ensures compression, encryption and spectrum distribution at the same time and with very little 
hardware requirements. Such solutions are very convenient for low power remote sensing applications (e.g. 
surveillance etc.). As seen, instead of various parameters of the chaotic maps (e.g. the λ  parameter) in the 
case of CA or HCA maps the rule (also called ID, to be detailed next) takes the role of parameter, being 
associated with part of the key space. The masks in the HCA may represent part of the encryption key as 
well as the initial state. In order to increase the key space one needs to consider larger neighbourhoods such 
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that more IDs will be identified as useful in terms of good cryptographic properties. Consequently, in Section 
4 we discuss the case m=5 (5 cells neighbourhood) and locate many other ID (from a huge space of 232 – 
about 4 billion) to generate HCA with good cryptographic properties. Consequently the key space is 
considerably expanded than in the case of m=3 neighbourhood.  

3.1. HCA Structure 

To explain the HCA structure we consider first the case m=3 (3 cells neighbourhood). It expands 
naturally to a 5-cell neighbourhood. Fig. 3 presents two m=3 HCA automata structures that were 
successfully tested for having both good cryptographic (as exposed in section 2) and binary synchronization 
properties. Note that they can be operated in either autonomous mode (as is the case in the transmitter system 
Tx) or with one input forced by the synchronization signal (as is the case in the receiving system Rx). 

The discrete-time dynamics of the hybrid cellular automata (HCA) in Fig. 3 is given by the next 
equation, which applies synchronously to all n cells (a cell is identified by an index { }ni ,..2,1∈ ): 

( ) ( )( )IDtxtxtxCellmtx T
i

T
i

T
ii

T
i ,)),(,)1( 11 +−⊕=+  (3)

where the upper index “T” stands for the transmitting CA counter, ⊕  is the logical XOR operator and 
( )IDuuuCell ,3,2,1  is a Boolean function with 3 binary inputs (u1,u2, and u3), also called the CA (local) rule.  

A periodic boundary condition is also assumed i.e. the leftmost cell (i=1) is connected to the rightmost one 
(i=n). The binary mask vector [ ]nmmm ,..,, 21=m  can be optimized [18] (so far our programs and limited 
computational time allow up to 29≤n ) to obtain a maximal cycle length ( 12/ →= nLr ). Since there are 
many near-optimal length masks, the mask itself can be considered as part of the encryption key. There are 
many possibilities to increase the key space. The one described in detail in the next section assumes a larger 
neighbourhood and consequently many types of cells ensuring the desired properties. One possibility, 
recently investigated, is to consider an alteration of the regular cellular topology into a “small worlds” one, 
as shown in Fig. 3 (right side). Essentially the model is described by the same equation (3) where the mask 
can be removed (i.e. all 0=im ) but where the optimization of the maximal cycle length may now be 
achieved using a random search process in a space of permutations (one or more pairs of outputs are 
swapped as shown in Fig.3). The mask is now replaced by the set of swapping pairs ( )swsw ji , . The above 
equation (3) extends easily to larger neighbourhoods such as m=5 considered herein by adding 2 additional 
inputs to the cell, located on the rightmost and leftmost positions (i-2, and i+2). For any neighbourhood the 
relationship between inputs and the output local CA rule can be characterized in two different ways and 
conversion functions are available via [24]: a) Truth-Table  (TT) representation: This is the most widely 
used representation. The rule is characterized by a binary vector ],...,,[ 021 yyyY NN −−= . Its representation in 
decimal basis is called a rule identifier (ID). The output ky  is a binary number assigned to the cell’s output 
when its inputs ordered as a binary vector [ ]11,..,, uuu nn −  are the binary representation of k;  b) Algebraic 
Normal Form (ANF):  This form is described by a binary vector  [ ]NcccC ,..., 10=  (using the method in [24] a 
unique conversion from Y to C and vice-versa exists) such that its coefficients are multipliers of an algebraic 
representation on the GF2 exemplified next for the case of m=3 neighborhood:  

1237236135343312322110 uuucuucuucucukuucucuccy ⊕⊕⊕⊕⊕⊕⊕=  (4)

Note that in general (for any size m of the neighbourhood) kc  is the multiplier of a product (logical 
AND) of all input variables in a binary vector  [ ]11,..,, uuu nn −  corresponding to 1 in the associated binary 
vector representing k.  For example, in the case of m=3 (above equation) for 21015 ==k  only the inputs 
corresponding to 1 in the input string 123 uuu  are selected to be multiplied resulting in the term 135 uuc .  

The ANF representation is extremely useful for FPGA implementations since it allows a direct 
translation into a simple VHDL line describing the entire HCA structure [25]. The resulting synthesized 
structure has a very efficient use of the resources, better than reported in other works for similar automata 
[26]. On the other hand, ANF is very useful to reveal whether the automata network is a linear one (e.g. in 
the same category with LFSR and other hybrid cellular automata that are mostly reported so far, typically 
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with m=3 and rules ID=90, ID=150  [27]) or a nonlinear one (from the same category with NLFSR, recently 
gaining a lot of interest [7][8][28] as having a better immunity to attacks than LFSR). A nonlinear automaton 
has at least one term with more than 2 inputs in the ANF equation (4). 

 

 
Fig. 3 – Two structures of HCA with m=3 neighbourhood: a) left – the “standard” HCA, b) the “small-worlds” HCA  

where some of the outputs are swapped. Such chaotic counters may be operated in either autonomous or synchronized mode. 

4. RESULTS AND CONCLUSIONS 

In order to investigate the very large family of 5-cells neighbourhood automata (there are 
42949672962

52 =  different cells possible) we adopted the following strategy:  
i) a set of software tools was developed as follows: a) Matlab tools for conversions between ANF and 

TT representations; b) a Matlab tool to establish the attractor profile revealing the cycles, their lengths and 
their associated randomness for an arbitrary number of cells n (Fig. 4). This program is used during a search 
process to locate ID-s with potential for good cryptographic properties [3][30]; c) A compiled C program to 
optimize the mask in order to get a very long cycle (state “0” corresponding to all bits equal to 0 is included 
in the longest cycle) and evaluate the average number of cycles for binary synchronization (Figure 5).  
Examples are given for ID=1347465135 corresponding to the ANF: 15151 uuuuy ⊕⊕⊕= . 

Note than finding the optimal mask is a computationally intensive processes involving the running of 
long cycles for several thousands of trials. The computational complexity is ( )nO 2  and it takes about 3 
minutes for n=17 and 4 times more for n=19.  

 

  
Fig. 4 – Detecting the attractor structures  

for a given ID and mask. 
Fig. 5 – Optimization of mask. 

ii) We considered the ANF representation to describe all possible families of 256 HCA corresponding 
to 3 inputs in the 5-cell neighbourhoods and use the conversion software to calculate ID and then evaluate 
the profile of attractors keeping only the desired CA. The situations that are symmetrical with respect to the 
central cell were not considered because they can be easily recovered by simply replacing kk uu −= 6 . A 
synthesis of the results is given in the following table.  
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Distribution of inputs in the neighbourhood  ID  ANF  
[u5,-,u3,-,u1] 
8 HCAs with good cryptographic properties 

2947502160 
2779097770 
4126476810 
2863290970 
+ 4 complemented versions of the 
above 

15130 uuuuy ⊕⊕⊕=  

13150 uuuuy ⊕⊕⊕=  

35150 uuuuy ⊕⊕⊕=  

13350 uuuuy ⊕⊕⊕=  

[u5,u4,-,u2,-]  and [u5,-,u3,u2,-]      NONE  - 
[-,-,u3,u2,u1]  4043247360  

4027576560 
4279173360 
4042264560 
+ 4 complemented versions of the 
above 

23120 uuuuy ⊕⊕⊕=  

12130 uuuuy ⊕⊕⊕=  

23130 uuuuy ⊕⊕⊕=  

12230 uuuuy ⊕⊕⊕=  

[-,u4,u3,u2,-]   
equivalent to [u3,u2,u1]  
(3 cells neighborhood) 

8 Boolean functions already 
described in [Dogaru HCA] 

The above formulare where ku  

is replaced with 1+ku  

 
At a closer inspection of the ANF formulae in the above table a very interesting conclusion follows: In 

all cases the same logical functions with 4 inputs is performed namely: acbai uuuumy ⊕⊕⊕=  where im  is 
bit i of the mask and all 6 possible permutations of the indices a,b,c are possible. Further studies indicates 
that the relationship between a,b and c leading to good cryptographic HCA is: hcbba =−=−  where h is an 
integer. For instance, if h = 2 )1,3,5(),,( =cba  and all 6 permutations leading to the IDs from the first line of 
the above table. Higher values of h will make sense for neighbourhoods larger than 5. For instance, h = 3 will 
lead to )1,4,7(),,( =cba  corresponding to m=7 cell neighbourhood. For any of these possible combinations 
one may optimize masks as seen in Fig. 5. For instance ID=1347465135 has the best mask found so far 
19801 leading to L=N-1=131071. In this case as for many other masks of the large family of CA discussed 
above, the randomness coefficient is maximal, i.e. 1=λ . A detailed analysis using standard batteries of 
statistical tests reveals that all HCA from the family generated by the unique logical functions with 4 
variables have very good cryptographic properties [29] expanding similar results reported by other authors 
[9] for the elementary CA with ID=101 which also uses a form of the above logical function as local rule.  

Concluding, in this work we approach the design of good random number generators using natural 
computing concepts, mainly the one of cellular automata. It is shown that all major paradigms for 
cryptographic generators (chaos based, linear and nonlinear shift register and cellular automata) fit in the 
same unique model of a nonlinear network with a binary state vector represented on n bits.  It is shown that 
comparing with chaotic maps the use of hybrid cellular automata as nonlinear maps brings the advantage of 
an efficient use of the state space (no transients). Moreover, the case of 5-cell neighbourhood  (using cells 
with 4 inputs, such that each HCA cell will correspond to 1 basic computational element (LUT or LE) in 
FPGA technology  as already was demonstrated in [25]. The algebraic normal form was conveniently used 
for synthesis since equation (4) translates directly into one VHDL line ensuring the description of the 
underlying CA. Further research will focus on identifying all cryptographically useful HCA-NLFSR with 4 
and 5 inputs rule in a 5-cell neighbourhood. For such cells, a VHDL description is already available which 
shows after synthesis that 2 LUTs are needed for each HCA cell (doubling the necessary hardware resources 
for the same n when compared to the case of 3-inputs from the 5-cell neighbourhood). Preliminary results 
show that among cells with 4-inputs, the HCA with ID=3432828060 was found as having similar 
cryptographic properties with  the HCA family discussed above, but in addition it has this properties for an 
arbitrary n  number of cells (the other HCAs do not have the “no transients” property for even n. Such a 
property is particularly useful in applications such as [23] in addressing square image sensor that will require 
an even number n of bits. Another further open question is to develop a systematic theory for finding the 
optimal masks analytically and to explain why only a very small number (among the many possible IDs) are 
both conservative and also have good randomness properties. Such problems are recognized as open 
problems in the NLFSR research community as well [29]. 
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