
 THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A,

 OF THE ROMANIAN ACADEMY Volume 14, Special Issue 2013, pp. 303–316

TOWARDS AN ALGEBRAIC ATTACK ON AES-128 FASTER THAN BRUTE-FORCE

Andrei SIMION*, Gabriel NEGARA**

* Independent researcher, Bucharest, ROMANIA
** "Al. I. Cuza" University of Iasi, ROMANIA

Corresponding author: Gabriel NEGARA, E-mail: negara10@gmail.com

In this paper we describe the main ideas of a few versions of an algebraic known plaintext attack

against AES-128. The attack could be applied under the hypothesis of knowing a part of the 16-bytes

key. These attack versions are based on some specific properties of the key schedule, properties that

allow splitting the keys space (2128 keys) in subspaces based on some well-defined criteria. The

practical efficiency of these attacks depends on some conditions including a conjecture. Also, the

paper introduces a definition of weak keys, in the context of the presented attack.

Key words: AES-128, Rijndael, brute-force attack, algebraic attacks, multivariate binary equations

system, key schedule, expanded keys.

1. INTRODUCTION

The Advanced Encryption Standard, with its three versions, AES-128, AES-192, and AES-256 is the

best known and most widely used block cipher [1]. A detailed description of AES, including some attacks

can be found in [2].

In the 2nd Section of the paper we introduce a scheme, containing the 11 round keys in a compact

form which leads to a series of properties of the key schedule, especially the way in which the bytes from the

initial key contribute to obtaining the round keys bytes.

Based on these properties, we present some ways in which the 2
128
 keys can be split in classes

(subspaces), the computation needed for the expansion of all the keys (at once) within a class being more

efficient (reduced) than the computation needed for obtaining the round keys for each key from that specific

class.

We also study the case when all the 16 bytes of the initial key K
0
are known, as in the brute-force

approaches.

The 3rd Section presents versions of potential algebraic attacks against AES-128. In these versions 1,

2, 4, or 8 bytes out of 16 of the initial key are considered unknown, while the other 15, 14, 12 or 8 bytes are

considered known. It is shown that the 11 round keys can be easily computed even if we consider unknown 8

bytes from the initial key.

The attack versions could be more efficient than a brute-force approach if some conditions are

satisfied, including a conjecture.

In this work we present in more detail only the version of the algebraic attack in which just 1 byte from

the initial key is considered unknown; for the other possible attack scenarios only the main ideas are

presented.

In order to obtain the equations system that needs to be tested for compatibility we use an algorithm for

computing S-box's output when providing as input binary vectors.

Improvements of these attacks can be made by taking into account some properties of the S-box and

also by using some feasible approaches (like in the case of the key schedule) that could lead to a better

structure of the equations systems obtained.

 In the 4th Section we present a definition of keys considered weak in respect to some criteria. For this

we expand the key in inverse order, from round 10 to round 0, because in this way is much easier to identify

the 'weak keys' in the sense we defined them.

304 Andrei Simion, Gabriel Negara 2

 Also, the attack version using the key expanded in inverse order and considering unknown 1 byte of the

key K
10
 could be more efficient than the attack considering the key expanded in the usual way and, again, 1

byte of the key unknown.

2. PROPERTIES OF THE KEY SCHEDULE

 The initial key K
0
 and the 10 round keys K

1
, K

2
, ..., K

10
 (each containing 16 bytes) are all called

"expanded key".

 Let us shortly remind the iterative computation of round key K
i+1
 from the round key K

i
:

 If

�� �

�
�
�
�
����	

� 	�	��	 	�
�		� ����
��	� 		�		�	 	…				…			
��
� 	…				…				…			
���� 		…				…				…			

�
�
�
�

 then the bytes of the round key K
i+1
are obtained by:

���	 �

�
�
�
�
�		���	

��	 �	����	 � �������		� ���� 					�	���	 � �����	 � �	�	� 					…									…			
��		��	 � 	��	�	 � �������
	� �																						…																													…									…	
��
	��	 � 	��
�	 � ��������	� �																						…																													…									…	
	���	��	 � 	����	 � ��������	� �																						…																													…									…		

�
�
�
�

 where + represents the bitwise operation XOR (applied for 2 bytes) and C
i
 represents the round

constant.

 It is difficult to notice some properties of the key by describing the expanded key using the above

relations.

 Using the conventions (for page fitting):

 – xy meaning x XOR y;

 – [x] meaning SBox(x);

 and other adequate notations, the expanded key can be written in a compact and easily readable form.

 The expanded key is presented in the first 4 columns of Scheme 1, the used notations being written in

the 5
th
 column; the values 01, 02, 04, ..., 1B, 36 represent the round constants.

1 2 3 4 5

0 a e i m

0 b f j n

0 c g k o

0 d h l p

1 eimA1 imA1 mA1 A1 A1=aeim[n]01

1 fjnB1 jnB1 nB1 B1 B1=bfjn[o]

1 gkoC1 koC1 oC1 C1 C1=cgko[p]

1 hlpD1 lpD1 pD1 D1 D1=dhlp[m]

2 iA1B2 mB2 A1B2 B2 B2=em[B1]02

2 jB1C2 nC2 B1C2 C2 C2=fn[C1]

2 kC1D2 oD2 C1D2 D2 D2=go[D1]

2 lD1A2 pA2 D1A2 A2 A2=hp[A1]

3 mA1B2C3 A1C3 B2C3 C3 C3=im[C2]04

3 nB1C2D3 B1D3 C2D3 D3 D3=jn[D2]

3 oC1D2A3 C1A3 D2A3 A3 A3=ko[A2]

3 pD1A2B3 D1B3 A2B3 B3 B3=lp[B2]

3 Towards an Algebraic Attack on AES-128 faster than Brute-Force 305

 (continued)

4 A1B2C3D4 B2D4 C3D4 D4 D4=m[D3]08

4 B1C2D3A4 C2A4 D3A4 A4 A4=n[A3]

4 C1D2A3B4 D2B4 A3B4 B4 B4=o[B3]

4 D1A2B3C4 A2C4 B3C4 C4 C4=p[C3]

5 B2C3D4A5 C3A5 D4A5 A5 A5=A1[A4]10

5 C2D3A4B5 D3B5 A4B5 B5 B5=B1[B4]

5 D2A3B4C5 A3C5 B4C5 C5 C5=C1[C4]

5 A2B3C4D5 B3D5 C4D5 D5 D5=D1[D4]

6 C3D4A5B6 D4B6 A5B6 B6 B6=B2[B5]20

6 D3A4B5C6 A4C6 B5C6 C6 C6=C2[C5]

6 A3B4C5D6 B4D6 C5D6 D6 D6=D2[D5]

6 B3C4D5A6 C4A6 D5A6 A6 A6=A2[A5]

7 D4A5B6C7 A5C7 B6C7 C7 C7=C3[C6]40

7 A4B5C6D7 B5D7 C6D7 D7 D7=D3[D6]

7 B4C5D6A7 C5A7 D6A7 A7 A7=A3[A6]

7 C4D5A6B7 D5B7 A6B7 B7 B7=B3[B6]

8 A5B6C7D8 B6D8 C7D8 D8 D8=D4[D7]80

8 B5C6D7A8 C6A8 D7A8 A8 A8=A4[A7]

8 C5D6A7B8 D6B8 A7B8 B8 B8=B4[B7]

8 D5A6B7C8 A6C8 B7C8 C8 C8=C4[C7]

9 B6C7D8A9 C7A9 D8A9 A9 A9=A5[A8]1B

9 C6D7A8B9 D7B9 A8B9 B9 B9=B5[B8]

9 D6A7B8C9 A7C9 B8C9 C9 C9=C5[C8]

9 A6B7C8D9 B7D9 C8D9 D9 D9=D5[D8]

10 C7D8A9B10 D8B10 A9B10 B10 B10=B6[B9]36

10 D7A8B9C10 A8C10 B9C10 C10 C10=C6[C9]

10 A7B8C9D10 B8D10 C9D10 D10 D10=D6[D9]

10 B7C8D9A10 C8A10 D9A10 A10 A10=A6[A9]

Scheme 1. The expanded key, using some specific notations.

 In the scheme above, for example

A1=aeim[n]01

 means

A1=a XOR e XOR i XOR m XOR SBox(n) XOR 01.

 Using the notations in column 5 a series of properties of the expanded key can be revealed, especially

the way the bytes of the initial key are found as structural parts of the expanded keys.

 First, Table 1 indicates the bytes from the initial key K
0
 that are components of the expressions of type

A, B, C and D.

Table 1

Components Bytes in Expressions A, B, C, D

a b c d e f g h i j k l m n o p

A1 a e i m n

A2 a e h i m n p

A3-A10 a e h i k m n o p

B1 b f j n o

B2 b e f j m n o

306 Andrei Simion, Gabriel Negara 4

 Table 1 (continued)

B3-B10 b e f

 j l m n o p

 C1 c

g

 k

o p

C2 c

f g

 k

n o p

C3-C10 c

f g

i k m n o p

 D1 d

h l m

p

D2 d

g h l m

o p

D3-D10 d

g h j l m n o p

 From Table 1 and Scheme 1 one can deduce the properties P1, P2, P3, P4 and P5 from Table 2. These
properties refer to the number of bytes from the round keys K

1
, K

2
, ..., K

10
 in which some specific byte or

bytes of the initial key K
0
 appears.

Table 2

The properties P1, P2, P3, P4 and P5

Property Bytes from K
0
 K1 K2 K3 K4 K5 K6 K7 K8 K9 K10

P1 a 4 6 8 9 9 9 9 9 9 9

P2 i 2 5 8 11 12 12 12 12 12 12

P3 a, c 8 12 12 12 12 12 12 12 12 12

P4 a, i 4 6 10 12 12 12 12 12 12 12

P5 a,c,i,k 8 12 12 12 12 12 12 12 12 12

 Let's notice that, due to the symmetry of the expanded key:
 – the property P1 also holds for the bytes b, c and d;
 – the property P2 also holds for the bytes j, k and l;
 – the property P3 also holds for the subset {b, d};
 – the property P4 also holds for the subsets {b, j}, {c, k} and {d, l};
 – the property P5 also holds for the subset {b, d, j, l}.
 Observation: one can take into consideration the other bytes from the initial key, but their properties
are less relevant for our purpose: affecting a number of bytes from the round keys as small as possible.

 Property P6: the bytes a, b, c and d pass through the S-Box only individually (never in combination of
2, 3 or 4).
 Property P7: the bytes a, b, c, d, i, j, k and l pass through the S-Box only in combination of at most 2
or 3.
 We will explain the significance of these properties for our potential attack.
 In the following we show that the brute-force approaches could be accelerated, at least in the process of
obtaining the expanded keys, and in the 3

rd
 Section we present the main ideas for some versions of an

algebraic attack using the enounced properties.
 In a naive brute-force attack, the keys are generated and used sequentially; in order to obtain n
expanded keys, 40 S-Box substitutions and 170 exclusive or operations are performed for n times.
 As a consequence of the fact that the key schedule process is independent from the enciphering process
we can first group the expanded keys in some specific classes and store them using small dimension tables.
These tables would contain precomputed bytes or combinations of bytes as components of the expanded keys
(for example, from Scheme 1, the byte A1B2C3B4 can be seen as an exclusive or of 4 components).

 There are multiple options for grouping the expanded keys space (2
128
) in such a way that obtaining a

group of n expanded keys is significantly less computationally expensive than the usual way (40 substitution

and 170 exclusive or for n times).

 These possibilities of generating classes of expanded keys depend on the ability to perform operations

based on the data presented in Scheme 1.

 We present only the main ideas:

5 Towards an Algebraic Attack on AES-128 faster than Brute-Force 307

 – the expressions A1, A2,, A10 depend only on 9 from the 16 bytes of initial key: a, e, i, m, n, h, p, k,

o; more than that, these expressions do not explicitly depend on the 9 bytes but only on the

 combinations aeim, n, hp and ko;

 – the expressions A1, A2,, A10, in combination with the expressions C1, C2,, C10 depend only

on 12 bytes of initial key and, like in the previous case, do not explicitly depend on each byte individually,

but only on the combinations ae, im, cg, ko, f, h, n and p.

3. ALGEBRAIC ATTACK VERSIONS

 All the attack versions we present are variations of the known plaintext brute-force attack. A part of the

bytes from the initial key K
0
 are considered known, the other bytes being recovered from some binary

equations systems. Obviously, like in the case of usual brute-force approach, when the equations system is

found to be incompatible, the attack will take into consideration some other values for the bytes considered

known.

 The practical efficiency of such versions of attacks depends especially on:

 – the computational effort needed to generate the equations systems;

 – the complexity of solving the system, in case of compatibility;

 – the efficiency of the false keys filtering.

 Related to the false keys filtering, the following conjecture would represent strong result for the

success and efficiency of the attack (if true):

Conjecture: given an over-defined binary equations system that could be compatible or incompatible, it is

easier to prove that it is incompatible than to find its solution, when compatible.

 This conjecture is true for a binary multivariate equations system, when the number of binary variables

is small but, probably, it is hard to decide when the number of variables is larger.

 In the following, we present the basic ideas of the attack versions successively considering unknown 1,

2, 4 and 8 bytes from the initial key.

 First, we depict the way to obtain the expanded key, starting from the Scheme 1.

 The Scheme 2 presents the expanded key obtained when the byte u = a is considered unknown. Similar

schemes are obtained when the byte considered unknown is b, c, or d. The expanded key when considering

unknown the bytes u = a and v = c is presented in Scheme 3 (similar when the bytes b and d are unknown).

The expanded key in the case of unknown bytes u = a, v = c, x = b and y = d is presented in Scheme 4.

 One can observe that the Scheme 2 can be directly obtained from the Scheme 1:

 – the values of the expressions A1, A2, ..., A10 from the 5th column are modified appropriately;

 – in the columns 1, 2, 3, 4, A1 becomes A1P0(u), A2 becomes A2P1(u), A3 becomes A3P2(u), ..., A10

becomes A10P9(u).

 The way to compute the expressions P0(u), P1(u), P2(u), ..., P9(u) is specified above the round key

where they appear for the first time.

 Similarly, the Scheme 3 can be deduced from the Scheme 2, by modifying the values of the

expressions C1, C2, ..., C10 from the 5th column and by replacing the expressions C1, C2, ..., C10 from the

columns 1, 2, 3, 4 with C1Q0(v), C2Q1(v), ..., C10Q9(v).

 Also, the Scheme 4 can be deduced from the Scheme 3.

 In the Schemes 2 and 3 one can observe that some of the round keys bytes (in green) do not depend on

the bytes considered unknown, in conformity with the properties P1 and P3.

 Other possibilities of selecting the unknown bytes are shortly presented, without the corresponding

schemes for the expanded keys (these schemes cannot be deduced directly from Scheme 1).

 Due to the similarities in the calculus of the expressions of P, Q, R, S type we will first present the

general methodology of calculus, followed then by the analysis of the particularities specific to each scheme.

 One can quickly observe that the expressions like P1, Q1, R1, S1 can be immediately obtained from

the truth tables of SBox(x+c), where c is a constant from the set {0, 1, 2, ..., 255}, depending on the bytes

values from the initial key, that represent components of the expressions A1, B1, C1, D1.

308 Andrei Simion, Gabriel Negara 6

1 2 3 4 5

0 u e i m

0 b f j n

0 c g k o

0 d h l p

P0(u)=u01

1 eimA1P0(u) imA1P0(u) mA1P0(u) A1P0(u) A1=eim[n]

1 fjnB1 jnB1 nB1 B1 B1=bfjn[o]

1 gkoC1 koC1 oC1 C1 C1=cgko[p]

1 hlpD1 lpD1 pD1 D1 D1=dhlp[m]

P1(u)=[A1P0(u)]

2 iA1B2P0(u) mB2 A1B2P0(u) B2 B2=em[B1]02

2 jB1C2 nC2 B1C2 C2 C2=fn[C1]

2 kC1D2 oD2 C1D2 D2 D2=go[D1]

2 lD1A2P1(u) pA2P1(u) D1A2P1(u) A2P1(u) A2=hp

P2(u)=[A2P1(u)]

3 mA1B2C3P0(u) A1C3P0(u) B2C3 C3 C3=im[C2]04

3 nB1C2D3 B1D3 C2D3 D3 D3=jn[D2]

3 oC1D2A3P2(u) C1A3P2(u) D2A3P2(u) A3P2(u) A3=ko

3 pD1A2B3P1(u) D1B3 A2B3P1(u) B3 B3=lp[B2]

P3(u)=[A3P2(u)]

4 A1B2C3D4P0(u) B2D4 C3D4 D4 D4=m[D3]08

4 B1C2D3A4P3(u) C2A4P3(u) D3A4P3(u) A4P3(u) A4=n

4 C1D2A3B4P2(u) D2B4 A3B4P2(u) B4 B4=o[B3]

4 D1A2B3C4P1(u) A2C4P1(u) B3C4 C4 C4=p[C3]

P4(u)=[A4P3(u)]P0(u)10

5 B2C3D4A5P4(u) C3A5P4(u) D4A5P4(u) A5P4(u) A5=A1

5 C2D3A4B5P3(u) D3B5 A4B5P3(u) B5 B5=B1[B4]

5 D2A3B4C5P2(u) A3C5P2(u) B4C5 C5 C5=C1[C4]

5 A2B3C4D5P1(u) B3D5 C4D5 D5 D5=D1[D4]

P5(u)=[A5P4(u)]P1(u)

6 C3D4A5B6P4(u) D4B6 A5B6P4(u) B6 B6=B2[B5]20

6 D3A4B5C6P3(u) A4C6P3(u) B5C6 C6 C6=C2[C5]

6 A3B4C5D6P2(u) B4D6 C5D6 D6 D6=D2[D5]

6 B3C4D5A6P5(u) C4A6P5(u) D5A6P5(u) A6P5(u) A6=A2

P6(u)=[A6P5(u)]P2(u)

7 D4A5B6C7P4(u) A5C7P4(u) B6C7 C7 C7=C3[C6]40

7 A4B5C6D7P3(u) B5D7 C6D7 D7 D7=D3[D6]

7 B4C5D6A7P6(u) C5A7P6(u) D6A7P6(u) A7P6(u) A7=A3

7 C4D5A6B7P5(u) D5B7 A6B7P5(u) B7 B7=B3[B6]

P7(u)=[A7P6(u)]P3(u)

8 A5B6C7D8P4(u) B6D8 C7D8 D8 D8=D4[D7]80

8 B5C6D7A8P7(u) C6A8P7(u) D7A8P7(u) A8P7(u) A8=A4

8 C5D6A7B8P6(u) D6B8 A7B8P6(u) B8 B8=B4[B7]

8 D5A6B7C8P5(u) A6C8P5(u) B7C8 C8 C8=C4[C7]

 P8(u)=[A8P7(u)]P4(u)1B

9 B6C7D8A9P8(u) C7A9P8(u) D8A9P8(u) A9P8(u) A9=A5

9 C6D7A8B9P7(u) D7B9 A8B9P7(u) B9 B9=B5[B8]

9 D6A7B8C9P6(u) A7C9P6(u) B8C9 C9 C9=C5[C8]

9 A6B7C8D9P5(u) B7D9 C8D9 D9 D9=D5[D8]

P9(u)=[A9P8(u)]P5(u)

10 C7D8A9B10P8(u) D8B10 A9B10P8(u) B10 B10=B6[B9]36

10 D7A8B9C10P7(u) A8C10P7(u) B9C10 C10 C10=C6[C9]

10 A7B8C9D10P6(u) B8D10 C9D10 D10 D10=D6[D9]

10 B7C8D9A10P9(u) C8A10P9(u) D9A10P9(u) A10P9(u) A10=A6

Scheme 2. The expanded key - 1 unknown byte of Ko.

7 Towards an Algebraic Attack on AES-128 faster than Brute-Force 309

1 2 3 4 5

0 u e i m

0 b f j n

0 v g k o

0 d h l p

P0(u)=u01 Q0(v)=v

1 eimA1P0(u) imA1P0(u) mA1P0(u) A1P0(u) A1=eim[n]

1 fjnB1 jnB1 nB1 B1 B1=bfjn[o]

1 gkoC1Q0(v) koC1Q0(v) oC1Q0(v) C1Q0(v) C1=gko[p]

1 hlpD1 lpD1 pD1 D1 D1=dhlp[m]

P1(u)=[A1P0(u)] Q1(v)=[C1Q0(v)]

2 iA1B2P0(u) mB2 A1B2P0(u) B2 B2=em[B1]02

2 jB1C2Q1(v) nC2Q1(v) B1C2Q1(v) C2Q1(v) C2=fn

2 kC1D2Q0(v) oD2 C1D2Q0(v) D2 D2=go[D1]

2 lD1A2P1(u) pA2P1(u) D1A2P1(u) A2P1(u) A2=hp

P2(u)=[A2P1(u)] Q2(v)=[C2Q1(v)]04

3 mA1B2C3P0(u)Q2(v) A1C3P0(u)Q2(v) B2C3Q2(v) C3Q2(v) C3=im

3 nB1C2D3Q1(v) B1D3 C2D3Q1(v) D3 D3=jn[D2]

3 oC1D2A3P2(u)Q0(v) C1A3P2(u)Q0(v) D2A3P2(u) A3P2(u) A3=ko

3 pD1A2B3P1(u) D1B3 A2B3P1(u) B3 B3=lp[B2]

P3(u)=[A3P2(u)] Q3(v)=[C3Q2(v)]

4 A1B2C3D4P0(u)Q2(v) B2D4 C3D4Q2(v) D4 D4=m[D3]08

4 B1C2D3A4P3(u)Q1(v) C2A4P3(u)Q1(v) D3A4P3(u) A4P3(u) A4=n

4 C1D2A3B4P2(u)Q0(v) D2B4 A3B4P2(u) B4 B4=o[B3]

4 D1A2B3C4P1(u)Q3(v) A2C4P1(u)Q3(v) B3C4Q3(v) C4Q3(v) C4=p

P4(u)=[A4P3(u)]P0(u)10 Q4(v)=[C4Q3(v)]Q0(v)

5 B2C3D4A5P4(u)Q2(v) C3A5P4(u)Q2(v) D4A5P4(u) A5P4(u) A5=A1

5 C2D3A4B5P3(u)Q1(v) D3B5 A4B5P3(u) B5 B5=B1[B4]

5 D2A3B4C5P2(u)Q4(v) A3C5P2(u)Q4(v) B4C5Q4(v) C5Q4(v) C5=C1

5 A2B3C4D5P1(u)Q3(v) B3D5 C4D5Q3(v) D5 D5=D1[D4]

P5(u)=[A5P4(u)]P1(u) Q5(v)=[C5Q4(v)]Q1(v)

6 C3D4A5B6P4(u)Q2(v) D4B6 A5B6P4(u) B6 B6=B2[B5]20

6 D3A4B5C6P3(u)Q5(v) A4C6P3(u)Q5(v) B5C6Q5(v) C6Q5(v) C6=C2

6 A3B4C5D6P2(u)Q4(v) B4D6 C5D6Q4(v) D6 D6=D2[D5]

6 B3C4D5A6P5(u)Q3(v) C4A6P5(u)Q3(v) D5A6P5(u) A6P5(u) A6=A2

P6(u)=[A6P5(u)]P2(u) Q6(v)=[C6Q5(v)]Q2(v)40

7 D4A5B6C7P4(u)Q6(v) A5C7P4(u)Q6(v) B6C7Q6(v) C7Q6(v) C7=C3

7 A4B5C6D7P3(u)Q5(v) B5D7 C6D7Q5(v) D7 D7=D3[D6]

7 B4C5D6A7P6(u)Q4(v) C5A7P6(u)Q4(v) D6A7P6(u) A7P6(u) A7=A3

7 C4D5A6B7P5(u)Q3(v) D5B7 A6B7P5(u) B7 B7=B3[B6]

P7(u)=[A7P6(u)]P3(u) Q7(v)=[C7Q6(v)]Q3(v)

8 A5B6C7D8P4(u)Q6(v) B6D8 C7D8Q6(v) D8 D8=D4[D7]80

8 B5C6D7A8P7(u)Q5(v) C6A8P7(u)Q5(v) D7A8P7(u) A8P7(u) A8=A4

8 C5D6A7B8P6(u)Q4(v) D6B8 A7B8P6(u) B8 B8=B4[B7]

8 D5A6B7C8P5(u)Q7(v) A6C8P5(u)Q7(v) B7C8Q7(v) C8Q7(v) C8=C4

P8(u)=[A8P7(u)]P4(u)1B Q8(v)=[C8Q7(v)]Q4(v)

9 B6C7D8A9P8(u)Q6(v) C7A9P8(u)Q6(v) D8A9P8(u) A9P8(u) A9=A5

9 C6D7A8B9P7(u)Q5(v) D7B9 A8B9P7(u) B9 B9=B5[B8]

9 D6A7B8C9P6(u)Q8(v) A7C9P6(u)Q8(v) B8C9Q8(v) C9Q8(v) C9=C5

9 A6B7C8D9P5(u)Q7(v) B7D9 C8D9Q7(v) D9 D9=D5[D8]

P9(u)=[A9P8(u)]P5(u) Q9(v)=[C9Q8(v)]Q5(v)

10 C7D8A9B10P8(u)Q6(v) D8B10 A9B10P8(u) B10 B10=B6[B9]36

10 D7A8B9C10P7(u)Q9(v) A8C10P7(u)Q9(v) B9C10Q9(v) C10Q9(v) C10=C6

10 A7B8C9D10P6(u)Q8(v) B8D10 C9D10Q8(v) D10 D10=D6[D9]

10 B7C8D9A10P9(u)Q7(v) C8A10P9(u)Q7(v) D9A10P9(u) A10P9(u) A10=A6

Scheme 3. The expanded key - 2 unknown bytes of Ko.

310 Andrei Simion, Gabriel Negara 8

1 2

0 u e

0 x f

0 v g

0 y h

P0(u)=u01 Q0(v)=v

1 eimA1P0(u) imA1P0(u)

1 fjnB1R0(x) jnB1R0(x)

1 gkoC1Q0(v) koC1Q0(v)

1 hlpD1S0(y) lpD1S0(y)

P1(u)=[A1P0(u)] Q1(v)=[C1Q0(v)]

2 iA1B2P0(u)R1(x) mB2R1(x)

2 jB1C2Q1(v)R0(x) nC2Q1(v)

2 kC1D2Q0(v)S1(y) oD2S1(y)

2 lD1A2P1(u)S0(y) pA2P1(u)

P2(u)=[A2P1(u)] Q2(v)=[C2Q1(v)]04

3 mA1B2C3P0(u)Q2(v)R1(x) A1C3P0(u)Q2(v)

3 nB1C2D3Q1(v)R0(x)S2(y) B1D3R0(x)S2(y)

3 oC1D2A3P2(u)Q0(v)S1(y) C1A3P2(u)Q0(v)

3 pD1A2B3P1(u)R2(x)S0(y) D1B3R2(x)S0(y)

P3(u)=[A3P2(u)] Q3(v)=[C3Q2(v)]

4 A1B2C3D4P0(u)Q2(v)R1(x)S3(y) B2D4R1(x)S3(y)

4 B1C2D3A4P3(u)Q1(v)R0(x)S2(y) C2A4P3(u)Q1(v)

4 C1D2A3B4P2(u)Q0(v)R3(x)S1(y) D2B4R3(x)S1(y)

4 D1A2B3C4P1(u)Q3(v)R2(x)S0(y) A2C4P1(u)Q3(v)

P4(u)=[A4P3(u)]P0(u)10 Q4(v)=[C4Q3(v)]Q0(v)

5 B2C3D4A5P4(u)Q2(v)R1(x)S3(y) C3A5P4(u)Q2(v)

5 C2D3A4B5P3(u)Q1(v)R4(x)S2(y) D3B5R4(x)S2(y)

5 D2A3B4C5P2(u)Q4(v)R3(x)S1(y) A3C5P2(u)Q4(v)

5 A2B3C4D5P1(u)Q3(v)R2(x)S4(y) B3R2(x)D5S4(y)

P5(u)=[A5P4(u)]P1(u) Q5(v)=[C5Q4(v)]Q1(v)

6 C3D4A5B6P4(u)Q2(v)R5(x)S3(y) D4B6R5(x)S3(y)

6 D3A4B5C6P3(u)Q5(v)R4(x)S2(y) A4C6P3(u)Q5(v)

6 A3B4C5D6P2(u)Q4(v)R3(x)S5(y) B4D6R3(x)S5(y)

6 B3C4D5A6P5(u)Q3(v)R2(x)S4(y) C4A6P5(u)Q3(v)

P6(u)=[A6P5(u)]P2(u) Q6(v)=[C6Q5(v)]Q2(v)40

7 D4A5B6C7P4(u)Q6(v)R5(x)S3(y) A5C7P4(u)Q6(v)

7 A4B5C6D7P3(u)Q5(v)R4(x)S6(y) B5D7R4(x)S6(y)

7 B4C5D6A7P6(u)Q4(v)R3(x)S5(y) C5A7P6(u)Q4(v)

7 C4D5A6B7P5(u)Q3(v)R6(x)S4(y) D5B7R6(x)S4(y)

P7(u)=[A7P6(u)]P3(u) Q7(v)=[C7Q6(v)]Q3(v)

8 A5B6C7D8P4(u)Q6(v)R5(x)S7(y) B6D8R5(x)S7(y)

8 B5C6D7A8P7(u)Q5(v)R4(x)S6(y) C6A8P7(u)Q5(v)

8 C5D6A7B8P6(u)Q4(v)R7(x)S5(y) D6B8R7(x)S5(y)

8 D5A6B7C8P5(u)Q7(v)R6(x)S4(y) A6C8P5(u)Q7(v)

P8(u)=[A8P7(u)]P4(u)1B Q8(v)=[C8Q7(v)]Q4(v)

9 B6C7D8A9P8(u)Q6(v)R5(x)S7(y) C7A9P8(u)Q6(v)

9 C6D7A8B9P7(u)Q5(v)R8(x)S6(y) D7B9R8(x)S6(y)

9 D6A7B8C9P6(u)Q8(v)R7(x)S5(y) A7C9P6(u)Q8(v)

9 A6B7C8D9P5(u)Q7(v)R6(x)S8(y) B7D9R6(x)S8(y)

P9(u)=[A9P8(u)]P5(u) Q9(v)=[C9Q8(v)]Q5(v)

10 C7D8A9B10P8(u)Q6(v)R9(x)S7(y) D8B10R9(x)S7(y)

10 D7A8B9C10P7(u)Q9(v)R8(x)S6(y) A8C10P7(u)Q9(v)

10 A7B8C9D10P6(u)Q8(v)R7(x)S9(y) B8D10R7(x)S9(y)

10 B7C8D9A10P9(u)Q7(v)R6(x)S8(y) C8A10P9(u)Q7(v)

Scheme 4 (1/2). The expanded key - 4 unknown bytes of Ko (the first 2 columns).

9 Towards an Algebraic Attack on AES-128 faster than Brute-Force 311

3 4 5

0 i m

0 j n

0 k o

0 l p

R0(x)=x S0(y)=y

1 mA1P0(u) A1P0(u) A1=eim[n]

1 nB1R0(x) B1R0(x) B1=bfjn[o]

1 oC1Q0(v) C1Q0(v) C1=gko[p]

1 pD1S0(y) D1S0(y) D1=hlp[m]

R1(x)=[B1R0(x)]02 S1(y)=[D1S0(y)]

2 A1B2P0(u)R1(x) B2R1(x) B2=em

2 B1C2Q1(v)R0(x) C2Q1(v) C2=fn

2 C1D2Q0(v)S1(y) D2S1(y) D2=go

2 D1A2P1(u)S0(y) A2P1(u) A2=hp

R2(x)=[B2R1(x)] S2(y)=[D2S1(y)]

3 B2C3Q2(v)R1(x) C3Q2(v) C3=im

3 C2D3Q1(v)S2(y) D3S2(y) D3=jn

3 D2A3P2(u)S1(y) A3P2(u) A3=ko

3 A2B3P1(u)R2(x) B3R2(x) B3=lp

R3(x)=[B3R2(x)] S3(y)=[D3S2(y)]08

4 C3D4Q2(v)S3(y) D4S3(y) D4=m

4 D3A4P3(u)S2(y) A4P3(u) A4=n

4 A3B4P2(u)R3(x) B4R3(x) B4=o

4 B3C4Q3(v)R2(x) C4Q3(v) C4=p

R4(x)=[B4R3(x)]R0(x) S4(S0(y))=[D4S3(y)]S0(y)

5 D4A5P4(u)S3(y) A5P4(u) A5=A1

5 A4B5P3(u)R4(x) B5R4(x) B5=B1

5 B4C5Q4(v)R3(x) C5Q4(v) C5=C1

5 C4D5Q3(v)S4(y) D5S4(y) D5=D1

R5(x)=[B5R4(x)]R1(x)20 S5(y)=[D5S4(y)]S1(y)

6 A5B6P4(u)R5(x) B6R5(x) B6=B2

6 B5C6Q5(v)R4(x) C6Q5(v) C6=C2

6 C5D6Q4(v)S5(y) D6S5(y) D6=D2

6 D5A6P5(u)S4(y) A6P5(u) A6=A2

R6(x)=[B6R5(x)]R2(x) S6(y)=[D6S5(y)]S2(y)

7 B6C7Q6(v)R5(x) C7Q6(v) C7=C3

7 C6D7Q5(v)S6(y) D7S6(y) D7=D3

7 D6A7P6(u)S5(y) A7P6(u) A7=A3

7 A6B7P5(u)R6(x) B7R6(x) B7=B3

R7(x)=[B7R6(x)]R3(x) S7(y)=[D7S6(y)]S3(y)80

8 C7D8Q6(v)S7(y) D8S7(y) D8=D4

8 D7A8P7(u)S6(y) A8P7(u) A8=A4

8 A7B8P6(u)R7(x) B8R7(x) B8=B4

8 B7C8Q7(v)R6(x) C8Q7(v) C8=C4

R8(x)=[B8R7(x)]R4(x) S8(y)=[D8S7(y)]S4(y)

9 D8A9P8(u)S7(y) A9P8(u) A9=A5

9 A8B9P7(u)R8(x) B9R8(x) B9=B5

9 B8C9Q8(v)R7(x) C9Q8(v) C9=C5

9 C8D9Q7(v)S8(y) D9S8(y) D9=D5

 R9(x)=[B9R8(x)]R5(x)36 S9(y)=[D9S8(y)]S5(y)

10 A9B10P8(u)R9(x) B10R9(x) B10=B6

10 B9C10Q9(v)R8(x) C10Q9(v) C10=C6

10 C9D10Q8(v)S9(y) D10S9(y) D10=D6

10 D9A10P9(u)S8(y) A10P9(u) A10=A6

Scheme 4 (2/2). The expanded key - 4 unknown bytes of Ko (the last 3 columns).

312 Andrei Simion, Gabriel Negara 10

 In order to compute the values of the other expressions, the output of the S-Box need to be computed
first, when providing also vector expressions as input.
 Thus, in the key schedule process as well as in the round enciphering process, computing expressions
of the form Sbox(c + P) is needed, where c is a byte constant, and P is formed by 8 vectors. These 8 vectors

are of dimension 2
8k
, where k ∈{1, 2, 4} represents the number of bytes in the K0 key, and can be expressed

using a truth table or an Algebraic Normal Form table.
 In order to perform such computation, we successively found 3 different methods. The 3

rd
 method is

at least two times faster than the 2
nd
 method and thousands times faster than the 1

st
 one. This 3

rd
 method uses

only the truth tables of P and SBox.

 So, we only need to compute c+ P and then to compose the functions SBox and (c+ P).

Note. We present the first two methods of computing Sbox(c + P) in Appendix, as some steps of them could
be interesting by themselves (including an algorithm for multiplying multivariate binary polynomials).
 Regarding the effective calculus of the expressions of type P, Q, R, S we consider that for each scheme
out of 3 (2, 3 and 4) one can find precomputation options, at least for a part of these expressions. This can be
done by using ideas similar to the ones presented in the end of Section 2.
 Also, in the same register, one can precompute other components of the expanded key, depending on
the known (considered) bytes from the initial key.
 Related to the attack versions in which we consider unknown other combinations of bytes from the
initial key than the ones in the Schemes 2, 3 and 4, we can mention that these versions could present some
advantages and also disadvantages. For example, considering as unknown the bytes (a, i, c, k) or (b, j, d, l),
the expanded key contains also some bytes that do not depend on the unknown bytes (due to the P5
property). Meanwhile, the expanded key obtained in the case of considering as unknown the bytes, a, b, c, d
do not contain such bytes. But, the unknown bytes a, b, c, d do not pass simultaneously through the S-Box,
computing the involved expressions implying only 2

8
-length arrays, while the unknown bytes a, i, c, k pass

simultaneously through the S-Box (a with i, c with k), for computing the involved expressions being
necessary arrays of dimension 2

16
.

 Regarding the algebraic attack version involving 8 unknown bytes (a, b, c, d, i, j, k, l), this could be the
most efficient one; the vectorial expressions depend only on combinations of 3 out of 8 unknown values: {ai,
k}, {bj, l}, {ck, i} and {dl, j}.
 Thus, these polynomial expressions could be computed using polynomial expressions of length 2

24
.

 Obtaining the equations systems can be done relatively easily when considering only 1 unknown byte.
One could use either the direct key expansion from the Scheme 2, or the inverse expansion from the Scheme
5. In these cases, the length of the binary arrays remains at 256 after passing through the S-Box in the
enciphering process. For the MixColumns operation, one can use the 32 × 32 binary equivalent matrix; for
decreasing the number of operations required, it is recommended for the equations systems computation
algorithm to use a meet-in-the-middle strategy.
 For the attack versions involving more unknown bytes, the difficulties in computing the equations
systems increase due to the simultaneous passing through the S-Box of the unknown bytes, during the
enciphering process. When using the vectorial expressions of the multivariate polynomials, the lengths of
these vectors could reach infeasible length. For example, for 8 unknown bytes, the length of these vectors
could have 2

64
 length.

 As a consequence, for these scenarios, new strategies must be used in order to efficiently compute the
equations systems, for example by introducing additional variables.

4. INVERSE KEY EXPANSION AND WEAK KEYS

 In order to obtain the round key K
i
 from K

i-1
 the following operations need to be performed (from right

to the left):
		���	��	 �	����	 � �������		��	� � ���	
��		��	 � 	��	�	 � �������
	��	�												
��
	��	 � 	��
�	 � ��������	��	�												
	���	��	 � 	����	 � ��������	��	�												

	�	�	��	 �	�	��	 � ����	
…												
…												

	�	�	��	 � 	�	��	 � ����	 	

......

......

......

......

	���	��	 � 	����	 � �
��	
…												
…												

	���	��	 �	���� � �
��	 	

11 Towards an Algebraic Attack on AES-128 faster than Brute-Force 313

1 2 3 4

0 xr r xr r

0 P3(x)r P3(x)r r r

0 [P1(x)Q1(x)r5]P2(x)r r r r

0 P1(x)Q1(x)r P1(x)Q1(x)r P1(x)Q1(x)r P1(x)Q1(x)r5

1 xr xr r r

1 P3(x)r r r r

1 P2(x)r P2(x)r P2(x)r P2(x)r4

1 P1(x)Q1(x)r r P1(x)Q1(x)r r

P3(x)=[P2(x)r4]

2 xr r r r

2 r r r r

2 P2(x)r R P2(x)r r

2 P1(x)Q1(x)r P1(x)Q1(x)r r r

3 xr xr xr xr3

3 r r r r

3 P2(x)r P2(x)r r r

3 P1(x)Q1(x)r r r r

Q1(x)=[xr3]

4 xr r xr r

4 r r r r

4 P2(x)r r r r

4 P1(x)r P1(x)r P1(x)r P1(x)r2

P2(x)=[P1(x)r2]

5 xr xr r r

5 r r r r

5 r r r r

5 P1(x)r r P1(x)r r

6 xr r r r

6 r r r r

6 r r r r

6 P1(x)r P1(x)r r r

7 xr xr xr xr1

7 r r r r

7 r r r r

7 P1(x)r r r r

P1(x)=[xr1]

8 xr r xr r

8 r r r r

8 r r r r

8 r r r r

9 xr xr r r

9 r r r r

9 r r r r

9 r r r r

10 a=x e=r i=r m=r

10 b=r f=r j=r n=r

10 c=r g=r k=r o=r

10 d=r h=r l=r p=r

r1=eim r2=hp r3=eim[n[ko]]40

Scheme 5. The inverse key expansion - 1 unknown bytes of K10.

314 Andrei Simion, Gabriel Negara 12

 For this inverse expansion, from K
10
 to K

0
, we did not find yet a compact scheme similar to the direct

expansion from Scheme 1. So, in Scheme 5 we present a simplified version, and only for the case in which

the only byte considered unknown is ���	�.
 The unknown byte is called x and all the other bytes will be identified by r, even their values are not

equal. The propagation of the unknown byte was studied and was taken into consideration the fact that the

xor operations between the known bytes lead also to known bytes; the same for the S-Box operations.

 The naming conventions are the same as in the previous schemes.

 One can observe that in Scheme 5 there are 122 known bytes of the expanded key and only 54

unknown bytes, in contrast with the Scheme 1, in which we have only 94 bytes considered known and 82

unknown.

 Thus, from the point of view on an algebraic attach version, the Scheme 5 would be more feasible. For

this case we did not analyze techniques for precomputation. The Scheme 5 presents another interesting

property that leads to a definition of weak keys.

Definition. A key is "weak" in relation with an unknown-considered byte (or a group of bytes) if, for a

relatively large set of values of the known bytes, the corresponding expanded keys contains less unknown

bytes than in the usual case.

 In our scenario, having the ���	� byte unknown, we may consider weak those keys for which r1 = r3,

because in this case P1(x)=Q1(x), determining another 9 bytes of the expanded keys to become known and

one more byte, ��
� , to have a simpler expression.
 After performing a series of operations, we got the relations r1=eim and r3=eim[n[ko]]40, thus one

can consider weak keys those that satisfy the relation [n[ko]]=40, with n, k, o bytes from the key �	� and 40
the constant of round 7.

 Similarly, one can find weak keys in relation with ��		�, ��
	� or ���	�.

CONCLUSIONS

 In this work we present a series of properties of the expanded key; based on these properties and using

adequate notations, we obtain several schemes of the expanded key, when considering as known all or part of

the bytes from the initial key, while the remaining bytes are considered unknown. The schemes are simple

and provide a way to split the expanded keys space in some specific classes. A significant part of these

classes' components can be precomputed and stored in tables having reasonable dimensions.

 Also, related to the inverse key schedule, we introduced a definition of weak keys.

 Using the 3rd method for computing expressions of type Sbox(c + P), in combination with

precomputation techniques and an efficient implementation of the MixColumn operation (adapted to our

approach), we are confident in the existence of an attack on AES-128 faster than naive brute-force.

 In consequence, we consider that our study is likely to contribute to the design of such a new attack

against AES-128.

FUTURE RESEARCH DIRECTIONS

 1. The study of the key schedule, using our approach, for AES-192 and AES-256, looking for some

additional properties, like the ones used in the related-key attacks known in the literature [3], [4].

 2. The design of more precomputation techniques, for the known bytes and for the polynomials

expressions depending on the unknown bytes.

 3. The identification of some properties of binary multivariate equations systems for the AES-128

case study that may lead to more efficient filtering of the false keys.

 4. The design of a new hybrid attack against AES based on the ideas from this paper, from [5] and

using the notion of higher order correlations [6].

13 Towards an Algebraic Attack on AES-128 faster than Brute-Force 315

APPENDIX

 In the first two methods of computing Sbox(c + P) we use the well-known algorithm of computing the

Algebraic Normal Form (ANF) of a Boolean function from the truth table (or vice versa). We name this

algorithm „alg0”.

 For a Boolean function

f:{0,1}
n
→{0,1}

m
,

 if fT represents the function’s truth table, and fA represents the table of vectors corresponding to the m

ANF function’s components (both tables having dimension 2
n
 × m), it is known that

alg0(fT) = fA and alg0(fA)=fT.

The 1
st
 method of computing Sbox(c + P).

 For this method we use only the ANF of the AES SBox; P represents the 8 vectors corresponding to the

8 polynomials, each having n binary variables.

 The c+P operations modifies only the components of the free terms of the 8 vectors. Let Q=c+P. In

order to perform the operations, we need to replace the variables x0, x1, ..., x7 from the ANF expressions of

the SBox by the vectors Q0, Q1, ..., Q7. Thus, we need to compute all the „monomials of polynomials” and

then to sum them based on the active bits from the 8 ANF expressions of the SBox.

 First, we need to perform multiplication operations for some multivariate polynomials of n binary

variables.

 Let RA1 and RA2, respectively RT1 and RT2, be the vectors of two multivariate polynomials of n binary

variables, corresponding to the ANF representations, and respectively, to the truth tables.

 We have

(1) RA1 · RA2 = alg0(RT1) · alg0(RT2) = alg0(RT1 · RT2) = alg0(alg0(RA1) · alg0(RA2)).

 Thus, the multiplication of two multivariate polynomials reduces to two applications of the alg0

algorithm and the multiplication of the corresponding truth tables (bitwise AND).

 This algorithm can be easily extended for the multiplication of m multivariate polynomials of n

binary variables.

 The number of operations involved can be reduced by using a 2
k
×2

k
 table containing the

precomputed multiplications of multivariate polynomials of k binary variables.

 Note: this multiplication algorithm was developed by the authors in 2012. Recently, we found a very

similar algorithm, published in April, 2013 [7]. The authors claim that their algorithm, „MultANF”, is new

and faster than other algorithms in the literature, for example the one in the software package SAGE

(www.sagemath.org).

 Because this first method involves a relatively large number of operations (247 multiplications of

binary multivariate polynomials, then XOR operations based on the active bits from the 8 ANF expressions

of the SBox) we looked for another method to compute the „monomials of polynomials”.

The 2
nd
 method of computing Sbox(c + P).

 We first present a more general case. Let f and g be two boolean functions:

f:{0,1}
p
→{0,1}

n
 , g:{0,1}

n
→{0,1}

m

and

h=g ○ f, h:{0,1}
p
→{0,1}

m
.

 Let fA, gA, hA, and fT, gT, hT, be the ANF tables and, respectively, the truth tables.

 We have hA=gA ○ fA and hT=gT ○ fT, resulting that:

(2) hA = alg0(hT) = alg0(gT ○ fT) = alg0(alg0(gA) ○ alg0(fA)).

 Thus, the calculus of hA starting from fA and gA reduces to the computation of fT and hT using alg0, the

composition of the two functions in order to obtain hT and finally to a new application of alg0 for obtaining hA.

316 Andrei Simion, Gabriel Negara 14

 In order to use this method for computing SBox(c+P) in our case, we set:

f = c + P, g = SBox, n = m = 8, p = 8k,

 where k ∈{1, 2, 4} represents the number of unknown key bytes.

REFERENCES

1. Joan Daemen, Vincent Rijmen, The Design of Rijndael. AES - The Advanced Encryption Standard, Springer-Verlag, 2002.

2. Lars R. Knudsen, Matthew J. B. Robshaw, The Block Cipher Companion, Springer-Verlag, 2011.

3. Alex Biryukov, Dmitry Khovratovich, Related-keyCryptanalysis of the full AES-192 and AES-256, 2009.

4. Alex Biryukov, Orr Dunkelman, Natahn Keller, Dmitry Khovratovich, Adi Shamir, Key Recovery Attacks of Practical Complexity

on AES Variants With Up To 10 Rounds, EUROCRYPT, 2010.

5. Nicolas T. Courtois, Josef Pieprzyk, Cryptnalysis of Block Ciphers with Overdefined Systems of Equations,

eprint.iacr.org/2002/044.pdf, 2002.

6. Andrei Simion, Contributions to Cryptanalysis of LFSR-based Stream Ciphers, PhD Thesis, University of Bucharest, Romania,

2008.

7. Subhabrata Samajder, Palash Sarkar, Fast multiplication of the algebraic normal forms of two Boolean functions, WCC 2013 -

International Workshop on Coding and Cryptography, Bergen, Norway, 2013.

Received June 1, 2013

