
 THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A,

 OF THE ROMANIAN ACADEMY Volume 14, Special Issue 2013, pp. 295–302

GENERATING CHAOTIC SECURE SEQUENCES USING TENT MAP
AND A RUNNING-KEY APPROACH

Adriana VLAD1,2, Adrian LUCA1, Octavian HODEA1, Relu TATARU1

1Faculty of Electronics, Telecommunications and Information Technology,
POLITEHNICA University of Bucharest, 1-3, Iuliu Maniu Bvd. Bucharest 6, Romania

2The Research Institute for Artificial Intelligence,
Romanian Academy, 13, Calea 13 Septembrie, Bucharest 5, Romania
Corresponding author: Adriana VLAD, E-mail: avlad@racai.ro

This paper completes recent results obtained by extending the running-key cipher procedure from
natural language to applications over chaotic systems. We apply the new running-key approach on the
chaotic tent map and prove its utility in obtaining practically zero-redundant pseudo-random number
generators, alongside with the possibility to consider the initial condition and the tent map control
parameter as elements in the secret key – a desideratum in chaos-based cryptography. The results are
both theoretically and experimentally supported by combining concepts from information theory and
statistical methods in the context of the chaotic system. The statistical evaluation includes NIST test
suite for testing the randomness of the proposed binary generator. Based upon the results presented in
this paper, the provided generator can be used for designing new cryptosystems where the pseudo-
random binary sequences can be a chief support.

Key words: tent map, pseudorandom binary sequences, running-key cipher, noisy channel, NIST test
suite

1. INTRODUCTION

The running-key procedure advanced in [1] and [2] for the logistic function is here extended and
adapted for tent map. Mathematically speaking, tent map is a discrete time chaotic system described by
relation (1):

���� � ����� � 	 				��� 					 , 0 � �� � �1 � ��1 � � 					 , � � �� � 1 (1)

where,	� ∈ �0,1�\�0.5� is the control parameter and �� is the current state of the system. Tent map defined in
(1) has uniform invariant probability density in [0, 1] interval. Binary sequences (further denoted by Z) are
obtained from the real �� values of tent map by a comparison with a � threshold equal with the control
parameter � as in Fig. 1 and relation (2).

Fig. 1 – Two binary sequences generated by tent map for two different initial conditions. Illustration for � � � � 0.4.

296 Adriana Vlad, Adrian Luca, Octavian Hodea, Relu Tataru 2

�� � �0,							0 � �� � �1,							� � �� � 1 (2)

The working versions of running-key procedure are illustrated in Fig. 2.

Fig. 2 – A running-key approach applied to the chaotic system. � stands for the binary typical sequences.
The method has the particularity that all the summed sequences are typical binary sequences generated

by tent map (1) considering successive iterations for a fixed � control parameter and a binarization threshold � � �. The summations in the Fig. 2 are bit by bit modulo 2.
The extending of running-key procedure for chaotic systems is due to the ergodicity property of these

systems. For fixed	� parameter in (1) we have an ergodic random process. Each parameter change will lead
to another random process. Thus, future discussions will be made for fixed � value of the parameter. Each
typical sequence will be defined by a randomly chosen initial condition in �0,1� and a fixed control
parameter � � �, the same for all the summed sequences.

Our particular concern when applying the running-key approach (see Fig. 2) is to evaluate the number

of summed typical binary sequences that can lead to !� sequence compatible with the fair coin model. In
other words, we aim to determine the " value, so that the output information source that produces !�
sequences becomes a binary memory-less source of zero-redundancy. In this case, the !� sequence will be
statistically independent of its components (sequences that are summed up) and it would not be possible to

be decomposed into its components.

This way of proceeding, that we call the running-key approach, includes a representation of variants in

Fig. 2 by using a cascade of information channels that allows a simple way to determine the value of " when
reaching the !� sequence compatible with the fair coin model. Using the cascade of information channels, all
evaluations will be done directly inspecting the output sequence !�. The requirement that !� 	 is compatible
with the fair coin model implicitly ensures the fact that !� cannot be separated into its components. This
condition is a desideratum that can be reached (verified) by various statistical tests carried on !� 	, but
avoiding more complicated assessments of “cryptanalysis” type.

Note: The term “cryptanalysis” is misused here because what we get in the end is a good quality

statistical pseudo-random binary generator, where !� sequences could be used as enciphering sequences
(keys) in a cryptosystem. For a better understanding, recall that the evaluation of running-key cipher applied

to natural language was based on cryptanalysis. Thus, in versions 1 and 2 (corresponding to Fig. 2) the

cipher was broken (i.e. the cryptograms !� and !# could be decomposed into the natural texts that
participated to the respective summation), but in the variant 3 (i.e. !$, meaning four summed natural texts)
the cipher could not be broken, result which allowed assessment of relative redundancy (about 75%) for

English language, [1] - [6].

In what follows, we show that the running-key procedure applied on tent map will provide a binary

pseudo-random number generator compatible with the fair coin model for a large range of values for �
control parameter.

Section 2 presents the theoretical evaluation of the generator obtained by the running-key approach.

Section 3 shows the experimental results obtained when catching the " value for which !� type sequence
corresponds to fair coin model. The investigation was made using probability tests supported by a Monte-

Carlo analysis and by the NIST test suite. Section 4 presents final remarks and conclusions.

3 Generating chaotic secure sequences using tent map and a running-key approach 297

2. THEORETICAL EVALUATION

By successively iterating the tent map (1) and choosing binarization threshold equal to tent map

parameter, the obtained binary sequence obeys to the i.i.d. statistical model (data coming up from

independently and identically distributed random variables), result shown in [7]. The result is valid for any

control parameter value (except � � 0.5, when the tent map statistical behavior is no more chaotic).
Although binary data are statistically independent even in successive iterations, in order to comply with the

fair coin model a numerical restriction concerning the parameter range of values is required [7] and [8].

Thus, if the parameter is chosen in the interval (0.49995, 0.50005), a binary pseudorandom generator of good

statistical quality can be obtained for typical sequences of length at most equal to 10% binary symbols (see
section 3). Although being of a good statistic quality, the generator has the disadvantage that the initial

condition can be easily recovered based on a binary sequence. In this case, the initial condition and the

control parameter from (1) may not be included in the secret key in cryptographic applications, [8] and [9].

By the running-key procedure, Fig. 2, we get !� type binary sequences compatible with the fair coin
model for a wide range of values of the control parameter. According to the running-key procedure, the

summed sequences will not be recovered from !�. In this way a major obstacle against the recovery of the
control parameter value and of the initial conditions will be encountered, which could lead to their inclusion

in the secret key.

In Fig. 2, � are i.i.d. binary sequences of N size, obtained by considering all successive iterations of

(1), fixed � value and � � �.
Fig. 3 introduces a new view of the running-key procedure from Fig. 2, through a cascade of

information channels. The cascaded information channels allow to catch the moment when the running-key

procedure stops, by evaluating the entropies of the secondary sources !�, !#,⋯!� . All the implied
information sources �', !�, !#, ⋯!�, are binary and memory-less; Fig. 3 allows a decision concerning the
degree of dependence/independence between the �' input source (which corresponds to the tent map and to
its typical sequences �) and the !� output source.

Note: The typical sequence !� � �' (�� (from Fig. 2) can be viewed as a particular realization of the !� source in Fig. 3 (output of the first information channel). Similarly, !� 	typical sequence from Fig. 2 can
be viewed as a particular realization of the !� source in Fig. 3 (!� source in Fig. 3 and !� typical sequence
from Fig. 2 are denoted by the same letter).

Fig. 3 – An information channel depiction of running-key approach.

The cascaded information channels are binary symmetric channels, each of them having the noise

matrix from relation (3).) * elements of the noise matrix are actually the probabilities of the �' information
source, P0=)��' � 0� 	� 	� and P1=)��' � 1� 	� 1 � � [7]. The !� secondary source has the probabilities:)�!� � 0� � �# (�1 � ��# � 1 � 2��1 � �� and)�!� � 1� � 2��1 � ��. It follows that the entropy
assigned to !� binary source can be obtained by using the entropy function ,�-� � �- log# - � �1 �-� log#�1 � -�. So ,�!�� � ,�2��1 � ���.

 !�

) * 0 1

 	�' 0 � 1 � �
1 1 � � �

) * �)�!� 	� 1/�' � 	3�,				3, 1 ∈ �0,1� (3)

Table 1 presents the entropy values corresponding to �' and !� information sources, evaluated for two
control parameter values: � � 0.2 and � � 0.4.

298 Adriana Vlad, Adrian Luca, Octavian Hodea, Relu Tataru 4

Table 1

Entropies assigned to the cascaded information channels

Entropy � � 0.2 � � 0.4 ,��'� � ,��� 0.7243 0.9699 ,�!�� � ,�2��1 � ��� 0.9074 0.9987 ,�!$� � ,�24�1 � 4��; 	4 � 2��1 � �� 0.9915 0.9994 ,�!6� � 	,�27�1 � 7��; 	7 � 24�1 � 4� 0.99978 0.9999999

Based on Fig. 3 and fundamentals from information theory and cryptography [4], [5], [6] and [10], the

cascaded binary symmetric channels successively convey information from the �' input source, which is a
redundant source, to the !� which is practically a non-redundant source. Thus we have the following
relationship between the entropies of the binary successive sources: ,��'� � ,�!�� � ,�!#� � ,�!$� � ⋯ � ,�!�� (4)

The running-key procedure determines the " value for which ,�!�� ≅ 1. To decide when ,�!�� ≅ 1,
a probability test on the !� binary sequence will be used. The decision that the sequence is compatible with
the fair coin model will be taken based on type II statistical error [11].

The probability test has the following hypotheses:

� null hypothesis, H0: - � -'
� alternative hypothesis, H1: - : -'

where - is the true probability of the investigated event.
The statistical significance level is ; � 0.05, thus �</# � 1.96 (�</#	is ;/2-point value of the standard

Gaussian law). The H0 hypothesis is accepted if |-̂ � -'| � A � �</#B-'�1 � -'�/C where -̂ is the
estimated value of - probability and C is the size of the 3. 3. D. sequence. The type II statistical error
probability for the test is expressed by (5).

E�C, F� � G 1√2IJ# exp N��� � -O�#2J# PQR�S
QRTS d�

(5)

 A � �</#VQR��TQR�W ,			-O � -'�1 X F�, J# � -O�1 � -O�/C
The decision on "	value (,�!�� ≅ 1) relies on type II statistical error probability and depends upon

two parameters, C and F (here -' � 0.5). In order to be sure that the binary sequence always obeys fair coin
model (i.e. the final expected result), F needs to be reevaluated for any C length (required by the
application).

The E type II statistical error probability of accepting wrong data as good data (i.e. to accept H0 even if
the coin is slightly unbalanced) is evaluated according to relation (5) where ; � 0.05 and -' � 0.5. For
example if F � 0.001 and C	 � 65536, the type II statistical error probability is greater than 0.94. For a
data volume	C � 10% (needed by NIST tests) and aiming that the probability test will pass in about 95% of
cases (E Z 0.95), it results F Z 10T[. If follows that a parameter value chosen in the interval [0.49995,
0.50005] will enable to obtain a typical !� binary sequence complying with the fair coin model without any
summation.

By applying the running-key procedure for a choice of the � parameter value in a larger interval, e.g. � ∈ �0.4, 0.6�, the decision that the output sequence complies with the fair coin model is taken when " � 4
respectively for ![(summing 5 typical sequences generated by tent map), see Table 1 and Section 3.

Comments on Table 1:

For � � 0.2 parameter value, the resulting entropy of the input binary source is ,��'� � 0.7243 bits.
If we sum two typical � 	sequences emitted by tent map it results !� information source of entropy ,�!�� �0.9074 bits. If we sum six typical sequences we obtain !6 sequence emitted by a practically non-redundant
information source namely, ,�!6� � 0.99978.

5 Generating chaotic secure sequences using tent map and a running-key approach 299

Following the reasoning applied for the evaluation of natural language redundancy, [2], [3] and [6], the

recovery of the 6 sequences of C length that participated to the summation would imply to determine 6 ∙ C ∙ ,��'� unknown binary symbols from C known binary symbols (representing !�).
Obviously, we cannot decompose !6 into the 6 components. If we could decompose it into the 6

components, we should have 6 ∙ ,��'� � 1. Judging from this, it would be enough to make a summation of
2 typical sequences produced by tent map with � � � � 0.2. In order to obtain a non-redundant generator for � � 0.2	and C � 10%, we need more than 5 summations for the needed accuracy. The 5 summations
implicitly ensure statistical independence between the !6 sequence and any of the � sequences that
participated to the summation, result which is valid only for C values (e.g. C � 65536) smaller than the
requirement of the NIST test suite.

To conclude: Finally we obtain a non-redundant sequence, completely independent of any typical

sequence participating in the summation. So, it is difficult to believe that someone could easily recover,

without exhaustive trials, the "	 (1 initial conditions and the control parameter value, based on !�.
3. EXPERIMENTAL RESULTS

Here we present experimental results on the proposed generator. The running-key procedure is

evaluated by successively investigating the typical sequences !�, !#,⋯ , !�, aiming to catch the moment when !� complies with the fair coin model. Section 3.1 presents the experimental study by using basic statistical
tests concerning m-gram probability (_ successive binary symbols) supported by the Monte-Carlo analysis.
Section 3.2 presents experimental studies on the same generator using the NIST test suite.

3.1. Basic statistical methods

For this generator, the control parameter is equal to the binarization threshold, in which case the �
sequences obey to the i.i.d. model, however their probability law is not uniform. By successive summations

we aim to determine the k value when !� sequence complies with the fair coin model. !� sequences are obtained by a bit by bit modulo 2 summation of the � sequences. Sequences denoted
by � are of size C � 10% bits and are generated by (1) for a fixed � control parameter value and randomly
chosen initial conditions according to the uniform law in the (0, 1) interval. For example, summing up the

two data sequences �' 	↔ ��'�, �'#,⋯ �'W� and 	�� ↔ ����, ��#,⋯ ��W� we obtain !� ↔ �a��, a�#, ⋯a�W�,
where a�* � �'* (��*.

Fig. 4 – The m-gram experimental data sets.

Based on the obtained !� binary sequences we evaluated the m-gram (_ � 1,2,3,4) probability by
applying the usual probability test with the following hypotheses: H0, meaning that the investigated
probability is equal to the -' expected theoretical value; H1, the investigated probability differs from -'. The H0	 hypothesis is accepted if |-̂ � -'| � A � �</#B-'�1 � -'�/C where -̂ is the estimated value of the
investigated m-gram probability. The m-gram data sets submitted to test are extracted from !� as shown in
Fig. 4. Note that the data set volume for monogram is C �	10%, for digram is C/2, for trigram C/3 and for
tetragram C/4. The corresponding -' theoretical probabilities are: 0.5 for monogram, 0.25 for digram, 0.125
for trigram and 0.0625 for tetragram. We made a detailed analysis for each possible m-gram (_ � 1,2,3,4).

300 Adriana Vlad, Adrian Luca, Octavian Hodea, Relu Tataru 6

For each and every investigated m-gram, we applied a Monte-Carlo analysis by resuming the

probability test 500 times and recording the proportion of the H0 hypothesis acceptance. The decision that !� sequence complies with the fair coin model was taken if the recorded proportion was within the interval �0.93, 0.97�, for each and every investigated m-gram.
In Table 2 we show this kind of results for � � 0.4 and for the " summation number equal to 3 and 4.

It can be noticed that the proportions of the H0 hypothesis acceptance is inside �0.93, 0.97� for all m-grams,
when " � 4.

Table 2

Proportion of H0 acceptance for m-gram probability test for � � 0.4
m-gram bc bd m-gram bc bd
0 0.622 0.96 011 0.936 0.958

1 0.622 0.96 100 0.944 0.948

00 0.742 0.974 101 0.93 0.934

01 0.95 0.95 110 0.95 0.942

10 0.942 0.94 111 0.912 0.96

11 0.716 0.96 0000 0.884 0.96

000 0.834 0.948 0001 0.926 0.962

001 0.946 0.936 0010 0.926 0.942

010 0.942 0.956 1111 0.864 0.966

We made similar investigations as in Table 2 for various � control parameter values. The overall study
was summarized in Table 3. Namely, for each k value we determined a range of values for the choice of �
control parameter. If the � control parameter is chosen inside the respective interval, the corresponding !�
sequence complies with the fair coin model. For example, for " � 3 the � parameter value should be chosen
within �0.43, 0.57� interval.

Table 3

Tent map control parameter intervals that enable to generate the !� non-redundant sequences e be Assigned interval for f
0 !' � �' (0.49995, 0.50005)

1 !� (0.497, 0.503)

2 !# (0.48, 0.52)

3 !$ (0.43, 0.57)

4 ![(0.39, 0.61)

3.2. NIST test suite

The performances of the proposed chaotic generator were evaluated using one of the most popular

standards for investigating the randomness of binary data, namely NIST (National Institute of Standards and

Technology) test suite. The NIST statistical test suite was specially designed for randomness examination of

hardware or software data generated from cryptographic random or pseudo-random generators.

 NIST tests were primarily applied to verify the results obtained by the running key approach, testing

the !� sequences from sub-section 3.1. Thus, we checked the ranges of the control parameter � for which the
chaotic generator provides pseudo-random and non-redundant binary sequences !�.

For our investigation we have generated a number of _ � 1000 different !� binary sequences for
each k value. Each !� sequence was generated using " (1 initial conditions for tent map, uniformly chosen
in the range �0,1�, each of length 10% bits (fixed � parameter and � � �).

For each !� sequence, all 15 variants of NIST statistical tests (divided in 188 tests) were applied. Each
test provides a --value [12]. Similarly to other statistical tests, the NIST tests are based on hypotheses
testing. Hypotheses testing is a procedure to determine whether an assumption about a particular theory is

reasonable. In this case, the assumption is that a certain sequence of 0 and 1 is random [12].

To validate each statistical test and to determine its passing ratio, a significance level (;) is firstly
chosen. A value ; � 0.01 of the significance level assumes that 99% of the sequences should pass the

7 Generating chaotic secure sequences using tent map and a running-key approach 301

statistical test. In our experiments the significance level was fixed to 1%. By the probability estimation
theory and resuming each test 1000 times, the range of acceptable proportions for each type of test can be

determined by using the confidence interval defined as	�- ∓ 3B-�1 � -�/_			, where - � 1 � ; � 0.99
and _ � 1000. Thus, the passing ratio for the !� sequences is restricted to the acceptance interval �0.9806, 0.9994�.

Note: In this paper only 15 of the 188 NIST statistical tests are illustrated. For tests existing in several

variants only the results for one randomly chosen test were provided for illustration. These categories

include: Cumulative Sums, Non Overlapping Template, Random Excursions, Random Excursions Variant

and Serial statistical tests.

The randomness of !� sequences generated using the running-key approach was investigated using the
NIST statistical test suite in order to verify/validate the range of � control parameter according to Table 3.

For these intervals we claim that !� sequences follow closely the fair coin model. The margins (left/right
limit) of each interval were tested along with several values inside the range. The results confirmed the high

quality for the provided intervals. Table 4 illustrates one of the NIST analysis for " � 4 (corresponding to ![) and the control parameter � � 0.4210 and threshold � � �.
Table 4

NIST results for the proposed generator (� � � � 0.4210)
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-

val.

P.R.% Statistical Test

111 107 107 100 96 95 101 88 102 93 0.86 0.989 Frequency

82 92 111 110 100 90 110 101 103 101 0.51 0.989 BlockFrequency

115 100 103 84 117 83 103 87 110 98 0.14 0.986 CumulativeSums

99 80 106 85 98 122 83 104 108 115 0.04 0.992 Runs

94 90 104 102 97 92 98 108 112 103 0.88 0.987 LongestRun

110 114 88 91 96 93 106 93 100 109 0.59 0.986 Rank

106 90 101 113 87 107 110 88 94 104 0.51 0.989 FFT

100 91 109 98 116 91 103 109 92 91 0.60 0.987 NonOverlappTemplate

117 103 101 88 90 108 100 86 105 102 0.50 0.985 OverlappTemplate

122 97 108 84 100 95 88 110 103 93 0.25 0.986 Universal

96 100 88 102 109 107 93 117 87 101 0.53 0.987 ApproximateEntropy

58 54 71 64 67 51 64 65 52 59 0.65 0.998* RandomExcursion

58 61 61 57 50 60 69 49 73 67 0.45 0.995* RandomExcursionV

105 91 103 88 117 103 87 103 107 96 0.53 0.989 Serial

124 96 96 85 94 100 93 88 111 113 0.14 0.987 LinearComplexity

* RandomExcursions and RandomExcursionsVariant tests used fewer sequences to complete the tests

Interpretation of Table 4

The proposed chaotic generator was analyzed using the latest version of the NIST statistical test suite

published on the official website of the National Institute of Standards and Technology. The result provided

by NIST consists in a test report for each binary file of length C	 i 	_ bits under investigation. The resulting
test report contains a table that includes the following columns:

� STATISTICAL TEST column presents the names of the tests

� PROPORTION (Passing Ratio – P.R.) column represents the passing ratio of the !� sequences
from a total of _ sequences. This value should be in the range provided in this section in case of success

� j�, j#, j$,⋯ , j�'	columns represent the number of sequences (from _) for which the --value is
located in one of the 10 disjoint intervals of length 0.1 which cover the �0,1� range

�)-value column indicates the uniformity of the --values obtained for each statistical test [11].
This can be considered as a)-value of --values and along with the proportion column it represents an
indicator of the statistical test success. This)-value is obtained as follows:

– The chi-square (k#) test is applied to measure the spreading of the --values over �0,1� using
the results provided by columns j , �3 � 1,2, …10�
– The value)_n�o4pq � 3r�_��s# , tu# � is evaluated. If)_n�o4pq v 0.0001, the --values can be
considered uniformly distributed in �0,1�.

302 Adriana Vlad, Adrian Luca, Octavian Hodea, Relu Tataru 8

According to NIST statistical test suite, regarding the passing ratio and the uniformity of p-values

obtained after applying the statistical tests, the proposed chaotic generator is eligible to be used in pseudo-

random binary data generation, with direct applications in cryptography.

4. CONCLUSIONS

 In this study we applied the new running-key method on the chaotic tent map and demonstrated its

utility in designing non-redundant pseudo-random number generators, alongside with the possibility to

consider the initial condition and the tent map control parameter as elements in the secret key. The

theoretical and experimental study was done on binary sequences generated by tent-map, for a binarization

threshold equal to the control parameter. This choice of the binarization threshold (equal to tent map

parameter) implied that all typical binary sequences involved in the running-key method comply with the

i.i.d. model required by the statistical inferences used in this evaluation.

The running-key method was experimentally supported by the usual statistical methods completed with

the NIST tests suite. All assessments (theoretical and experimental) provided numerical results that allow an

immediate application. These quantitative results consist in providing the range of choice for the control

parameter as a function of the number of summations (requested by the application) involved in the running-

key method.

The running-key procedure, firstly advanced for the logistic map and considered generally valid for

ergodic sources, is here completed by this new exploration on tent map.

As a final remark, the provided generator can be used in cryptographic applications where the pseudo-

random binary sequences can be an important component in the enciphering key designing.

We mention that, although the running-key study on tent map was done for a particular choice of the

binarization threshold, this method can be extended, with similar results, for other choices of binarization

threshold.

REFERENCES

1. A. Vlad, A. Ilyas and A. Luca, Unifying running-key approach and logistic map to generate enciphering sequences, Annals of

Telecommunications, vol. 68, p. 179–186, 2013.

2. A. Vlad, A. Ilyas and A. Luca, A closer view of running-key cipher on natural languages, Proceedings of the Romanian Academy,

Series A, vol. 13, Number 2/2012, pp. 157–166, 2012

3. C. E. Shannon, Prediction and Entropy of Printed English, Bell Syst. Tech. J., vol. 30, p. 50–64, 1951.

4. C. E. Shannon, Communication Theory of Secrecy Systems, Bell Syst. Tech. J., vol. 28, p. 656–715, 1949.

5. C. E. Shannon, A Mathematical Theory of Communication, Bell Syst. Tech. J., vol. 27, p. 379–423, 623–656, 1948.

6. W. Diffie and M. Hellman, Privacy and Authentication: An Introduction in Cryptography, Proc. IEEE, vol. 67, p. 397–426, 1979.

7. A. Luca, A. Ilyas and A. Vlad, Generating Random Binary Sequences using Tent Map, in Proc. 10th International Symposium on

Signals, Circuits and Systems, (ISSCS), Iasi, Romania, pp. 81–84. June 30–July 1, 2011.

8. A. Ilyas, A. Luca and A. Vlad, A study on binary sequences generated by tent map having cryptographic view, in Proc. 9th

International Conference on Communications (COMM), Bucharest, pp. 23–26, June 2012.

9. D. Arroyo, G. Alvarez, J. M. Amigo and S. Li, Cryptanalysis of a family of self-syncronizing chaotic stream cipher, Commun

Nonlinear Sci Numer Simul 16, pp. 805–813, 2011.

10. A. Spataru, Fondements de la theorie de la transmission de l'information, Lausanne: Presses Polytechniques Romandes, 1987.

11. J. Devore, Probability and Statistics for Engineering and the Sciences, 2nd ed., Monterey, California: Brooks/Cole Publishing

Company, 1987.

12. Runkin et al., Statistical test suite for random and pseudo random number generators for cryptographic applications, NIST special

publication, Vols. 800-22, 2010.

Received May 20, 2013

