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We present the concept of image segmentation based on Gauss - Uniform Noise Mixed Models (G-
UN-MM) that we also introduce in this paper, the theoretical foundation of the segmentation method 
based on this model, results of the method on several classes of pictures, and a comparison with other 
methods. The proposed implementation of the G-UN-MM method has a simple and sound theoretical 
foundation and is not computationally demanding. It produces in many cases better segmentation 
results than other methods that are more computationally intensive. 
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1. INTRODUCTION 

Robotics and automatic information processing have persistently pushed forward the domain of image 
processing during more than five decades already. Since the 1970s, methods for image segmentation have 
emerged in view of automatic image recognition and understanding. There is a huge and ever increasing 
number of papers on image segmentation. Several review papers, as [1–5] sum up the evolution of the 
domain and the vast collection of methods proposed for image segmentation. 

However, after decades of progress, image segmentation remains an issue of intense research. Various 
approaches to image segmentation produce very good results for relatively well-defined objects in the image, 
where the definition is understood in terms of a set of specified features, like color, brightness, or texture. No 
segmentation method performs well enough on all classes of images. Even human experts produce very 
different segmentations when viewing the same picture [5]. 

2. THE G-UN-MM MODEL 

The Gauss Mixed Models (GMM) are well established tools in the literature, with applications in 
image and speech processing and in data clustering. The GMM model applied to histograms of the images 
lead to the well-known `valley' method of segmentation. More developed segmentation methods based on 
histograms are presented for example in [6], [7], [8], and [9]. The common algorithms for determining the 
GMM models are highly sensitive to observational noise [10] and produce model solutions that are not 
guaranteed optimal. The same remains true for uniform noise mixed models (UNMM), because the model 
finding procedures are essentially the same. Therefore, we prefer an expeditious procedure for determining 
reasonable Gauss-uniform noise- mixed models, G-UN-MMs. The procedure employs heuristic rules and a 
set of parameters that can be adjusted during a supervised learning phase. 

Recall that a GMM model (exemplified here for the single variable case) consists of an approximation 
of a given probability distribution ( )p x  by a weighted sum (weights kA ) of normal distributions, ( ).kG x , as 
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and hJ  are closed intervals. The segmentation method based on the ‘valleys’ in the image histogram is 
founded on the assumption that the histogram is well modeled by a GMM, moreover on the assumption that 
all segments in the image have normal distributions. In the literature, the first hypothesis is rarely clarified, 
or even mentioned; it actually says that the equation (1) reduces, up to a small error, ε, to 
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where N is small, typically less than 10, while ε  represents a small fraction of the whole ‘energy’ 
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and J is the bounded interval of interest (for gray images, [0, 255]=J ). With the above condition not met, 
there is little real reason to use a GMM for approximating the histogram, as other families of non-Gaussians 
functions can perform better in approximating the given function (that is, p(x) ) with a finite sum of 
functions. The difficulty is to ‘guess’ a suitable family of such functions. 

Many images have histograms that hardly verify the two hypotheses, which explains why the 
segmentation of these images, based on the ‘valleys’ in the histogram, perform poorly. As a matter of 
example, the image in Fig. 1 (left) has the far-from-GMM type histogram shown in Fig. 1(right). Instead, it is 
much easier to approximate it by the G-UN-MM model advocated in this paper. 

 

 
Fig. 1 – Example of histogram that is difficult to represent by a Gauss mixture model.  

Image of red cells from PUDN [15]. 

A true mixture of uniform and normal distribution functions may look composed of more Gauss 
functions than the case is, as in Fig. 2, where it may seem that two normal distributions overlap at lower 
values of x, while the effect is due to the superposition of a Gauss function (average 28, spreading 19) and a 
constant function (with value 0.028 in the interval 0 to 24). Similarly, the noisy function in Fig. 2 middle 
would need at least four Gauss functions to approximate the parts of the function between 0 and 40, 
respectively between 150 and 200), but the graph is actually that of a mixture of Gauss and constant 
functions, as seen in Fig. 2, right. Notice that the graph of the noisy function in the middle panel in Fig. 2 is 
vertically-translated; it represents the graph of the histogram before smoothing. 
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Fig. 2 – Examples of noisy Gauss and constant function mixtures that may falsely seem to be Gauss mixtures. A sum of three 

constant functions (seen like rectangles) and of two Gauss functions (represented by dotted lines), see the right panel, produce the 
distribution seen in the middle panel. Ox axis represents gray levels; vertical axis stands for histogram values. 

We propose a more flexible model that extends GMM by including uniform distribution in the mixture, 
according to 

)()()(
11

xUBxGAxp h
h

h
k

kk ⋅∑+∑ ⋅=
∞

=

∞

=
, (4)

where hk B,A are constants, ( ) 1hU x =  for [ , ]h h hx J a b∈ = , and ( ) 0hU x =  elsewhere (that is, hU  are 
constant in their specific interval [ ]hh ,ba ). Accordingly, we propose the approximation 
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where εM and εN  are the minimal values that satisfy the condition and depend on ε , which determines the 
truncation. 
 

Remark. Any derivable distribution with bounded derivative on a closed interval RJ ⊂  can be 
approximated according to equ. (5). 

Proof. Directly results by combining the validity of staircase approximation, which results from Rolle 
(mean value) theorem, and the theorem on GMMs as universal approximators. 

3. SEGMENTATION PROCEDURE 

The first stage of the procedure is preprocessing, consisting in the removal of noise using a combined 
median and average filtering on 3x3 windows. The second stage is the determination of the histogram, 
followed by the third stage, which is the smoothing of the histogram, again by applying a set of median and 
average filters. 

The smoothed histogram )(xH is then approximated by a G-UN-MM either using one of the well-
known techniques, as genetic algorithms (GA) or gradient descent, or a heuristic method. In this paper, we 
present the later version, for reasons that will become apparent subsequently. 

The approximation is performed by searching first for the intervals where the function )x(H is 
‘almost’ constant, in the sense that on the specified interval its variation is less than a given constant 
percentage δ of the total variation of the function )(xH . In addition, we look for such intervals that have the 
maximal length. That is, we seek the maximal intervals JJh ⊂  satisfying the condition (i) hJxx ∈∀ 21, , 

δ<− )()( 21 xHxH . The problem setting is still imperfectly defined. In the first place, it is possible that there 
are many intervals [ ]hhh baJ ,=  satisfying the condition (i), but their length, hhhh abLJL −==)( , be very 
small, at the limit hh ba ,  corresponding to two successive gray levels in the image. For practical reasons, we 



4 Image segmentation based on G-UN-MMs and heuristic  81

wish to impose the condition (ii) θ≥hL  where θ  is a specified value expressed in percentage of the gray 
scale, for example %15=θ of 255max =G ; define θ⋅=Θ 255 . On the other hand, the problem is not suitably 
defined, because the solution consisting in the set of intervals satisfying (i) and (ii) is not unique. This is easy 
to see considering a symmetric function, for example a parabola, with parts of both branches present in the 
interval of interest of the variable x: there are two intervals, placed symmetrically with respect to the 
parabola axis, which satisfy the conditions. 

To remove multiple solutions, we require a third, constructive condition, namely (iii) the intervals are 
constructed starting with the lowest x value, each interval being determined by the conditions  

(a) h1h ba >+   
and  

(b) ( ) ( )[ ] ( ) ( )( )δ<−Θ+∈∀= >+ 21211 ,,,|min xHxHxHxHxxxa
hbxh . 

(6)

We accelerate the interval search procedure by using a window W of length of about 4/Θ  and 
moving it from left to right with a step larger than 2 gray levels, for example a step of 2/W . As long as the 
interval extended by the points in the new window satisfies the condition 

( ) ( )[ ] ( ) ( ) δ<−Θ+∈∀ 2121 ,,, xHxHxHxHxx we keep growing the interval. The procedure determines a well 
defined set of intervals hJ  that have no point in common. The set of points qq bababa ,...,,,, 2211 , defining the 
intervals ],[),....,,[),,[ 2211 qq bababa , determined as above, is used as set of thresholds for the segmentation. 

We can further simplify and significantly accelerate the procedure for finding the segmentation 
thresholds by relaxing the condition (5). Namely, we replace it with the condition that in every window W 
the function variation is limited, ( ) ( ) δ<−∈∀ 2121 ,, xHxHWxx . In the simulations reported here, we used 
this simplified condition. The almost constant intervals were determined using an overlapping window of 24 
samples considering the following rule: if ( ) ( )  , NVV w 5.1,5.1minmax =δ<=− then the interval is considered 
constant, where )(maxmax xHV Wx∈=   and )(minmin xHV Wx∈= are the maximum and minimum values in the 
window W , and wN  is the number of samples in the window. If two successive windows have this property, 
we join them in the same interval. Else, the interval is considered non-constant (not representing a UN 
distribution). Notice that, according to this procedure, the threshold Θ is represented by the width of the 
window used to determine the (minimal length) intervals. 

It is worth discussing the operation of the procedure described above. It can be viewed as a procedure 
for the detection of plateaus of the histogram, where the plateaus are the intervals ],[ hh ba . For a ‘nicely’ 
behaving histogram, the procedure produces a reasonable detection of the Gauss and plateau (uniform noise) 
intervals, see Fig. 3. However, this is not always the case. Notice in Fig. 3 that the procedure identifies 
approximately the UN regions, while the Gauss regions are left apart. The intervals determined by the 
partition so produced will serve for segmentation and will work correctly for this task. 

 

 
Fig. 3 – a) Intervals (marked by bars) detected for a nicely behaving histogram and for well chosen procedure parameters;  

b) intervals detected for a not so nicely behaving histogram; a plateau is determined in the region where the two Gauss functions 
superpose. Horizontal axis: gray levels; vertical axis: histogram values. 
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When the constant θ  is large, the peaks of some Gaussians may be detected as plateaus. In addition, 
the region where two Gaussians with close averages superpose may be detected as plateaus. This is a 
significant difference to what a GMM would produce and may be a drawback in some cases. However, the 
limit is removed by taking smaller values for θ . Another difference between the segmentation produced by 
this procedure and a true GMM or a G-UN-MM is that the slopes of the Gauss functions may be detected as 
independent intervals. In this case, the results do not conform to a G-UN-MM. To remove at least partly this 
drawback, we introduce a couple of heuristic rules: 

(Rule 1) If the interval before a plateau interval has a positive slope and the interval after the plateau 
has a decreasing slope, then the slopes are merged with the plateau interval. 

(Rule 2) If a plateau interval is followed by a slope that has not to be merged with the next plateau, 
than the slope corresponds to a boundary between segments and objects and is equally divided between the 
adjacent plateaus. The effect of these rules will be partly illustrated in the Results section. 

Figure 4b shows, in contrast to Fig. 4a, the sketch of a situation when the histogram is not a well-
behaved one, with Gauss functions with large values of the spreading superposing and creating, together with 
some small amplitude uniform distribution, a plateau between them. The procedure selects the three intervals 
marked by thick solid lines. Applying the rules above, the result would be the formation of the larger interval 
marked by thick dotted lines. 

4. RESULTS 

We exemplify the operation of the procedure and the results for a few typical images. The images are 
from the public academic databases referred in the legends of the respective figures or in the text. The set of 
databases used comprises Berkeley Segmentation Dataset and Benchmark [11, 12], and SIPI database [13]. 

The histograms for images “rice” and “Lena” are shown in Fig. 5. Notice that both histograms appear 
to be mixtures of Gauss functions and plateaus, but that they are very different in complexity. The rice image 
has a very simple single-Gauss single-plateau structure. 

In contrast, Lena histogram includes seven visually identifiable Gauss functions. In addition, it 
includes four plateaus that are easy to guess visually; two of these plateaus have almost null value and two 
(from about 70 to about 100, respectively from about 170 to about 200) have large swings around the average 
value in the interval. The segmented images produced by the described procedure are shown in Fig. 5 (NB. The 
“rice” image is from [17]; the image Lena is from SIPI Image Database – Misc [13]. The image of red cells 
used in Fig. 1 is from [15] and appears in numerous other papers. We believe that the images are copyright-
free.) 

 

 
Fig. 4 – Histograms for the images “rice” (left) and “Lena” (right). Axes as in Fig. 3. Vertical “axes” number of pixels. 

Notice in the segmented images in Figure 5 that, as expected, the algorithm detects for “Lena” a large 
number of thresholds (six). The segmentation obtained using the presented method, as in Fig. 5, compares 
favorably with the ones obtained in [14] and in [17], for Lena image, respectively with the results reported in 
[16] and [17], for “rice” image. 

A more intricate image seems to be Fig. 6, which is not in the public domain. The picture represents 
giraffes in the wild and is difficult to segment even for the humans because of the similarity of shades of the 
animals and of the vegetation in the background, moreover because of the shadows. The histograms of the 
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original and filtered images, which are also given in Fig. 6, show that at least two Gauss functions and at 
least two or three almost-plateaus are present, one of them – a small one – at the peak of the first Gauss 
function. The segmented image is clearly selecting two of the giraffes, with the third giraffe partly visible too 
(see [18] for a discussion of these pictures). 

 

 
Fig. 5 Segmentation of the “rice” and “Lena” images. Upper row: left – original; middle – segmented with two thresholds,  

right – segmented with one threshold. Lower row: left – original; right – segmented with six thresholds. 

 
Fig. 6 – Histograms (upper panel: left – original, right filtered; axes variables as in Fig. 3), original and segmented image  

(lower panel). Original image graciously provided by Prof. Fred F. B. Bercovitch. Copyright remains with Prof. Bercovitch. 

More segmentation results were published in two preliminary papers, [19], [20]. We also tested the 
influence of noise on the segmentation. Images with a SNR (signal to noise ratio) larger than 10 dB are 
virtually unaffected by additive uniform noise. A subsequent paper will present the analysis of the results on 
segmentation of noisy images. 
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4. DISCUSSION 

The presented segmentation method is an improvement over the simple Gauss-model based 
segmentation, but it is not a universal method. When the histogram of the image is not easy to approximate 
by a G-UN mixed model, the method works poorly, as any other not-adapted model would do. Yet, even in 
the last case, the method is more capable of performing the approximation than a pure Gauss mixture model. 
The method proposed is not computationally demanding and compares well from this point of view to other 
methods, including those presented in the papers [21], [22], and [23]. Also, the method is easy to extend to 
multispectral images like those used in [24]. 

As any well-adapted to image segmentation method, when the model G-UN-MM is suitable, it may be 
used to compress information. Indeed, the loss of information when the pixels belonging to a given segment 
are replaced by a constant gray level is minimal to the human eye. Hence, for an image with q segments, 
replacing the 0 to 255 gray scale by a compressed scale of r  levels, where 22 ,  logrq r q< =     will reduce 

the data in the image representation by a factor of 8 / r . For a color image, the reduction is ( ) 38 / r . For a 
gray scale picture, the reduction is typically to 3 or 4 bits instead of 8, leading to a 2:1 to 2.66:1. An example 
of compressed image is shown in Fig. 5 (Lena). The G-UN mixed model is not a knowledge-based one; 
therefore, we cannot expect that the segmentation based on G-UN-MM performs as a human segmenter. 
However, the model may help better detect segments that are meaningful to humans. The method can work 
as a supervised procedure if the value of the parameter  and the number of allowed segments are not fixed 
by the user, but are optimized based on a set of images that have been segmented by human operators. 

5. CONCLUSIONS AND FUTURE WORK 

We have proposed a novel segmentation method that is based on the statistics of gray levels and on 
statistical considerations expressed as heuristic rules. For the foundation of the method, we introduced the 
Gauss-Uniform Noise Mixture Model that better fits than the Gauss Mixture Model the statistics of many 
images. Then, we exposed a segmentation algorithm based on the principles of G-UN-MMs. The algorithm 
determines directly, heuristically and approximately the intervals that the exact G-UN-MM would produce. 
The procedure has the advantage to be almost insensitive to noise and to departures from the ideal Gauss and 
uniform distributions. In addition, the procedure is not as computationally demanding as typical algorithms 
for GMMs and GUNMM are. While the procedure may work unsupervised, it needs a set of parameters with 
specified values. The procedure is easy to transform into a supervised one, where the parameters are adjusted 
automatically based on a set of images and on their ‘ideal’ segments. The exemplified results obtained for 
several images favorably compare to other results in the literature. While we can confidently say that there is 
no ideal segmentation procedure, because there are several criteria of segmentation performance evaluations, 
depending on the purpose of segmentation, we believe the segmentation method based on G-UN-MMs are a 
useful addition to the set of procedures and that it advances the capabilities of segmentation for a vast class 
of images. 

We believe that the procedure is well suited for small portable equipment; due to the simple 
computations required by the procedure, it will reduce the power consumption and the computation time. In 
addition, the heuristic procedure presented is less sensitive to noise in the images and poses no stability 
issues. Embedding simple data mining capabilities in equipment for telemedicine, and ambulatory automated 
diagnostic equipment could benefit of this segmentation techniques, as would visual monitoring of wild 
animals in their habitats. 
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