# A CLASSIFICATION OF CUBIC EDGE-TRANSITIVE GRAPHS OF ORDER 4p<sup>3</sup>

Mehdi ALAEIYAN<sup>1</sup>, Bibi Naimeh ONAGH<sup>2</sup>

<sup>1</sup> Islamic Azad University, South-Tehran Branch, Tehran, Iran
<sup>2</sup> Golestan University, Department of Mathematics, Gorgan, Iran E-mail: m-alaeiyan@azad.ac.ir

A graph is called edge-transitive if its automorphism group acts transitively on its edge set. In this paper, we classify all connected cubic edge-transitive graphs of order  $4p^3$  for each prime p.

Key words: Regular coverings, Edge-transitive graphs, Semisymmetric graphs, Symmetric graphs.

# **1. INRODUCTION**

Throughout this paper, graphs are assumed to be finite, simple, undirected and connected. For the group-theoretic concepts and notations not defined here we refer to [14].

For a graph X, we denote by V(X), E(X), A(X) and Aut(X) the vertex set, the edge set, the arc set and the full automorphism group of X, respectively. If a subgroup G of Aut(X) acts transitively on V(X), E(X) and A(X) we say that X is G-vertex-transitive, G-edge-transitive and G-arc-transitive, respectively. In the special case, when G = Aut(X) we say that X is vertex-transitive, edge-transitive and arc-transitive (or symmetric), respectively. A regular G-edge-transitive but not G-vertex-transitive graph will be referred to as a G-semisymmetric graph. In particular, if G = Aut(X), the graph is said to be semisymmetric.

An *s*-arc in a graph *X* is an ordered (s+1)-tuple  $(v_0, v_1, ..., v_{s-1}, v_s)$  of vertices of *X* such that  $v_{i-1}$  is adjacent to  $v_i$  for  $1 \le i \le s$  and  $v_{i-1} \ne v_{i+1}$  for  $1 \le i \le s$ . A graph *X* is said to be *s*-arc-transitive if Aut(X) is transitive on the set of *s*-arcs in *X*. A graph *X* is said to be *s*-regular if Aut(X) acts regularly on the set of *s*-arcs in *X*. Tutte [23] showed that every finite connected cubic symmetric graph is *s*-regular for some *s*,  $1 \le s \le 5$ . A subgroup of Aut(X) is said to be *s*-regular if it acts regularly on the set of *s*-arcs in *X*. The classification of cubic symmetric or semisymmetric graphs of different orders is given in many papers. Note that a cubic edge-transitive graph is either symmetric or semisymmetric and then, for classifying cubic edge-transitive graphs of orders 2p [13, 11],  $2p^2$  [13,11], 4p [4,12],  $4p^2$  [3,12], 6p [7,12],  $6p^2$  [17, 12], 8p [2,8],  $8p^2$  [1, 8], 10p [7,10],  $10p^2$  [24, 10], 14p [7, 20] and  $2p^3$  [19, 9] have been classified. In this paper, we want to classify all connected cubic edge-transitive graphs of order  $4p^3$  for each prime *p*, because in [4, Theorem 1.1] we proved that there is no cubic semisymmetric graph of order  $4p^3$ , where *p* is a prime.

Now, we need to introduce a new graph as titled  $EC_{p^3}$  in [12]. Let  $K_4$  be the complete graph of order 4. We identify the vertex (Fig. 1) set of  $K_4$  with  $\{a, b, c, d\}$ . Let p be a prime and  $Z_p^3$  be the 3-dimensional row vector space over the field  $Z_p$ . Take the standard basis vectors  $e_1 = (1,0,0)$ ,  $e_2 = (0,1,0)$  and  $e_3 = (0,0,1)$ . The graph  $EC_{p^3}$  is defined with the vertex set  $V(EC_{p^3}) = V(K_4) \times Z_p^3$  and the edge set  $E(EC_{p^3})$  as following:

 $E(EC_{p^3}) = \{(a, x)(b, x), (a, x)(c, x), (a, x)(d, x), (b, x)(c, x + e_1), (c, x)(d, x + e_2), (d, x)(b, x + e_3) \mid x \in \mathbb{Z}_p^3\}.$ 

THEOREM 1.1. Let p be a prime and X be a edge-transitive cubic graph of order  $4p^3$ . Then, X is isomorphic to one of  $EC_{p^3}$  for a prime p. Moreover, X is a 2-regular symmetric graph.

#### 2. PRELIMINARIES

Let X be a graph and N be a subgroup of Aut(X). For  $u, v \in V(X)$ , denote by  $\{u, v\}$  the edge incident to u and v in X, and by  $N_X(u)$  we denote the set of vertices adjacent to u in X. The quotient graph  $X_N$ induced by N is defined as the graph such that the set  $\Sigma$  of N-orbits in V(X) is the vertex set of  $X_N$  and  $B, C \in \Sigma$  are adjacent if and only if there exist  $u \in B$  and  $v \in C$  such that  $\{u, v\} \in E(X)$ .

A graph  $\tilde{X}$  is called a covering of a graph X with projection  $\wp: \tilde{X} \to X$  if there is a surjection  $\wp: V(\tilde{X}) \to V(X)$  such that  $\wp|_{N_{\tilde{X}}(\tilde{v})}: N_{\tilde{X}}(\tilde{v}) \to N_X(v)$  is a bijection for any vertex  $v \in V(X)$  and  $\tilde{v} \in \wp^{-1}(v)$ . A covering  $\tilde{X}$  of X with a projection  $\wp$  is said to be regular (or K-covering) if there is a semiregular subgroup K of the automorphism group  $Aut(\tilde{X})$  such that graph X is isomorphic to the quotient graph  $\tilde{X}_K$ , say by h, and the quotient map  $\tilde{X} \to \tilde{X}_K$  is the composition  $\wp h$  of  $\wp$  and h; to emphasize this we sometimes write  $\wp_K$  instead of just  $\wp$ . The fibre of an edge or a vertex is its preimage under  $\wp$ . An automorphism of  $\tilde{X}$  is said to be fibre-preserving if it maps a fibre to a fibre, while every covering transformation maps a fibre on to itself. All of fibre-preserving automorphisms form a group called the fibre-preserving group.

Let *K* be a finite group. A voltage assignment (or, *K*-voltage assignment) of *X* is a function  $\xi: A(X) \to K$  with the property that  $\xi(a^{-1}) = (\xi(a))^{-1}$  for each arc  $a \in A(X)$ . The values of  $\xi$  are called voltages, and *K* is the voltage group. The graph  $Cov(X,\xi) = X \times_{\xi} K$  derived from a voltage assignment  $\xi: A(X) \to K$  has vertex set  $V(X) \times K$  and edge set  $E(X) \times K$ , so that an edge (e,g) of  $E(X) \times K$  joins a vertex (u,g) to  $(v,g\xi(a))$  for  $a = (u,v) \in A(X)$  and  $g \in K$ , where  $e = \{u,v\}$ . Giving a spanning tree *T* of the graph *X*, a voltage assignment  $\xi$  is said to be *T*-reduced if the voltages on the tree arcs are the identity.

Gross and Tucker [15] showed that every regular covering  $\tilde{X}$  of a graph X can be derived from a *T*-reduced voltages assignment  $\xi$  with respect to an arbitrary fixed spanning tree *T* of *X*. It is clear that if  $\xi$  is reduced, the derived graph  $X \times_{\xi} K$  is connected if and only if the voltages on the cotree arcs generate the voltages group *K*.

Let  $\tilde{X}$  be a *K*-covering of *X* with a projection  $\wp$ . If  $\alpha \in Aut(X)$  and  $\tilde{\alpha} \in Aut(\tilde{X})$  satisfy  $\tilde{\alpha} \wp = \wp \alpha$ , we call  $\tilde{\alpha}$  a lift of  $\alpha$ , and  $\alpha$  the projection of  $\tilde{\alpha}$ . The lifts and the projections of such subgroups are of course subgroups in  $Aut(\tilde{X})$  and Aut(X), respectively. A regular covering projection  $\wp$  is called arc-transitive if a some subgroup  $G \leq Aut(\tilde{X})$  lifts along  $\wp$ , which *G* is an arc-transitive subgroup.

Let  $X \times_{\phi} K \to X$  be a connected *K*-covering. Given  $\alpha \in Aut(X)$ , we define a function  $\overline{\alpha}$  from the set of voltages on fundamental closed walks based at a fixed vertex  $v \in V(X)$  to the voltage group *K* by

$$(\phi(C))^{\overline{\alpha}} = \phi(C^{\alpha}),$$

where *C* ranges over all fundamental closed walks at *v*, and  $\phi(C)$  and  $\phi(C^{\alpha})$  are the voltages on *C* and  $C^{\alpha}$ , respectively.

The next proposition is a special case of [18, Theorem 4.2].

PROPOSITION 2.1. Let  $X \times_{\alpha} K \to X$  be a connected K-covering. Then, an automorphism  $\alpha$  of X lifts if and only if  $\phi(u,v)^{\sigma} = \psi(u,v)$  extends to an automorphism of K.

Two coverings  $\widetilde{X}_1$  and  $\widetilde{X}_2$  of X with projections  $\wp_1$  and  $\wp_2$  respectively, are said to be isomorphic if there exists a graph isomorphism  $\widetilde{\alpha}: \widetilde{X}_1 \to \widetilde{X}_2$  such that  $\widetilde{\alpha} \wp_2 = \wp_1$ .

2

We quote the following propositions.

PROPOSITION 2.2 [22]. Two connected regular coverings  $X \times_{\phi} K$  and  $X \times_{\psi} K$ , where  $\phi$  and  $\psi$  are *T*-reduced are isomorphic if and only if there exists an automorphism  $\sigma \in Aut(K)$  such that  $\phi(u,v)^{\sigma} = \psi(u,v)$  for any cotree arc (u,v) of *X*.

PROPOSITION 2.3 [16, Theorem 9]. Let X be a connected symmetric graph of prime valency and G an s-regular subgroup of Aut(X) for some  $s \ge 1$ . If a normal subgroup N of G has more than two orbits, then it is semiregular and G/N is an s-regular subgroup of  $Aut(X_N)$ , where  $X_N$  is the quotient graph of X corresponding to the orbits of N. Furthermore, X is a N-regular covering of  $X_N$ .

PROPOSITION 2.4 [6, Propositions 2-5]. Let X be a connected cubic symmetric graph and G be an s-regular subgroup of Aut(X). Then the stabilizer  $G_v$  of  $v \in V(X)$  is isomorphic to  $Z_3, S_3, S_3 \times Z_2, S_4$ , or  $S_4 \times Z_2$  for s = 1, 2, 3, 4 or 5, respectively.

PROPOSITION 2.5 [12, Theorem 6.2]. Let X be a connected cubic symmetric graph of order 4p or  $4p^2$  for a prime p. Then X is isomorphic to the 2-regular hypercube  $Q_3$  of order 8, the 2-regular Petersen generalized graphs P (8, 3) or P (10, 7) of order 16 or 20 respectively, the 3-regular Desargues graph of order 20 or the 3-regular Coxeter graph  $C_{28}$  of order 28.

### **3. MAIN RESUALTS**

For a positive integer n, we denote by  $Z_n$  the cyclic group of order n. Note that up to isomorphism there are exactly five groups of order  $p^3$  for each odd prime p. These five groups are given by the following presentations:

$$Z_{p^{3}}, Z_{p^{2}}^{3}, Z_{p^{2}} \times Z_{p},$$

$$N(p^{2}, p) \coloneqq \langle x, y | x^{p^{2}} = y^{p} = 1, [x, y] = x^{p} \rangle,$$

$$N(p, p, p) \coloneqq \langle x, y, z | x^{p} = y^{p} = z^{p} = 1, [x, y] = z, [z, x] = [z, y] = 1 \rangle.$$

$$b$$



Fig. 1 – A spanning tree and a voltage assignment on  $K_4$ .

At the first, we shall classify the cubic symmetric graphs of order  $4p^3$  for each prime p. For each prime  $p \le 7$  by [5], there exists one unique cubic symmetric graph of order  $4p^3$ . Moreover, these graphs are 2-regular. So, we can assume that  $p \ge 11$ .

LEMMA 3.1. Suppose that X is a cubic symmetric graph of order  $4p^3$ , where  $p \ge 11$  is an odd prime. Set A := Aut(X). Moreover suppose that  $Q := O_p(A)$  is the maximal normal p-subgroup of A. Then  $|Q| = p^3$ .

*Proof.* Let X be a cubic symmetric graph of order  $4p^3$ , where  $p \ge 11$  is an odd prime. Then by [23], **X** is at most 5-regular. By Proposition 2.4, the stabilizer  $A_v$  of  $v \in V(X)$  is a  $\{2,3\}$ -group. Moreover,  $|A_v| = 2^{s-1}3$  and hence  $|A| = 2^{s+1}3p^3$ , for some  $1 \le s \le 5$ . Now, we intend to prove that  $|Q| = p^3$ .

We first suppose that |Q|=1. Let N be a minimal normal subgroup of A. It is obvious that N must be solvable because otherwise N is isomorphic to  $A_5$  or PSL(2,7), a contradiction to  $p \ge 11$ . So, N is an elementary abelian 2-group, 3-group or p-group. Since |Q|=1, N can not be an elementary abelian pgroup. Also, N can not be an elementary abelian 3-group because otherwise  $N \le A_v$ , where  $v \in V(X)$  and N is not semiregular, which contradicts Proposition 2.3. Thus, N is an elementary abelian 2-group. It is easy to check that N has more than two orbits and then by Proposition 2.3, it is semiregular. Therefore, |N|=2 or 4. Now suppose that |N|=2. Let M/N be a minimal normal subgroup of A/N. By Proposition 2.3, A/N is an s-regular subgroup of  $Aut(X_N)$ . Clearly, M/N is solvable and then elementary abelian. If M/N is an elementary abelian 2-group, it is semiregular by Proposition 2.3, so that |M/N| = 2. It follows that the quotient graph  $X_M$  has odd number of vertices and valency 3, which is impossible. Also, similarly as above M/N can not be an elementary abelian 3-group. Thus, M/N is an elementary abelian p-group. So,  $|M| = 2p, 2p^2$  or  $2p^3$ . Let  $P \in Syl_p(M)$ . Then we can easily see that P is normal and also characteristic in M. Then, A has a normal subgroup of order  $p, p^2$  or  $p^3$ , a contradiction to |Q|=1. It leads to  $|N|\neq 2$ . Now, if |N|=4, then the quotient graph  $X_N$  must have order  $p^3$ , a contradiction. Therefore,  $|Q| \neq 1$ . Finally, if |Q| = p or  $p^2$ , then Q has more than two orbits and then by Proposition 2.3, A/Q is an s-regular subgroup of  $Aut(X_Q)$ , where  $X_Q$  is of order  $4p^2$  or 4p, respectively. But by Proposition 2.5, there is no symmetric cubic graph  $X_Q$  of these orders for prime  $p \ge 11$ , a contradiction. Therefore,  $|Q| = p^3$ . Similarly as previous, Q has more than two orbits and then by Proposition 2.3,  $X_Q$  is a symmetric cubic graph of order 4. Then  $X_Q$  must isomorphic to the complete graph  $K_4$ . Indeed, X is a Q-regular covering of the complete graph  $K_4$ , where  $|Q| = p^3$ .

LEMMA 3.2. Let  $p \ge 11$  be a prime and X be an arc-transitive Q-regular covering of the complete graph  $K_4$ , where  $|Q| = p^3$ . Then, X is a  $Z_p^3$ -covering of  $K_4$  and moreover, X is 2-regular.

*Proof.* Let  $X = K_4 \times_{\phi} Q$  be a connected Q-covering of  $K_4$  satisfying the hypotheses, where  $\phi = 0$  on the spanning tree T as illustrated by plain lines in Fig. 1. We assign voltages  $z_1, z_2$  and  $z_3$  in Q to the cotree arcs (b,c), (c,d) and (d,b), respectively. The connectivity of X implies that  $Q = \langle z_1, z_2, z_3 \rangle$ . Set  $\alpha = (ab)(cd)$  and  $\beta = (bcd)$ . The arc-transitivity of the regular projection  $\phi$  implies that  $\alpha$  and  $\beta$  lift. Let C be a fundamental cycle in  $K_4$ . Then, C is *abc, acd* or *adb* and their images with corresponding voltages on  $K_4$  are given in Table 1.

Fundamental cycles and their images with corresponding voltages on  $K_4$ 

| С   | <b>φ</b> ( <i>C</i> ) | С " | $\phi(C^{\alpha})$    | $C^{\beta}$ | $\phi(C^{\beta})$ |
|-----|-----------------------|-----|-----------------------|-------------|-------------------|
| abc | $Z_1$                 | bad | <i>Z</i> <sub>3</sub> | acd         | $Z_2$             |
| acd | $Z_2$                 | bdc | $-z_1 - z_2 - z_3$    | adb         | $Z_3$             |
| adb | $Z_3$                 | bca | $Z_1$                 | abc         | $Z_1$             |

The mapping  $\overline{\alpha}$  from the set of voltages on the three fundamental cycles of  $K_4$  to the voltage group Q is defined by  $\phi(C)^{\overline{\alpha}} = \phi(C^{\alpha})$ , where C ranges over these three cycles. Similarly, one can define  $\overline{\beta}$ . Since  $\alpha$  and  $\beta$  lift, by Proposition 2.1,  $\overline{\alpha}$  and  $\overline{\beta}$  can be extended to automorphisms of Q, say  $\alpha^*$  and  $\beta^*$ , respectively. Then,  $z_1^{\beta^*} = z_2$  and  $z_2^{\beta^*} = z_3$  imply that  $z_1, z_2$  and  $z_3$  have the same order. As  $|Q| = p^3$ , we have five possible cases:  $Q = Z_{p^3}, Z_{p^2}^3, Z_{p^2} \times Z_p, N(p^2, p)$  or N(p, p, p).

**Case I:**  $Q = Z_{p^3}$ . In this case, because  $z_1, z_2$  and  $z_3$  have the same order,  $Q = \langle z_1 \rangle = \langle z_2 \rangle = \langle z_3 \rangle$ . Thus, one may assume  $z_1 = 1$ . Let  $1^{\beta^*} = k$ . By considering the images of  $z_1, z_2$  and  $z_3$  under  $\beta^*$ , we have  $z_2 = k, z_3 = k^2$  and  $k^3 = 1$  in  $Z_{p^3}$ . Let  $1^{\alpha^*} = l$ . Similarly, by considering the images of  $z_1, z_2$  and  $z_3$  under  $\alpha^*$ , we have  $l = k^2$  and  $lk^2 = 1$ . Thus, k = l and so k = 1. It follows that  $z_1 = z_2 = z_3 = 1$ . Since  $z_2^{\alpha_*} = -z_1 - z_2 - z_3$ , we can conclude that  $4 = 0 \pmod{p^3}$  that is impossible.

**Case II**:  $Q = Z_p^3$ . In proof of [12, Theorem 6.1], this case has been investigated and it has been proved that X is isomorphic to one of graphs  $EC_{p^3}$  for a prime p > 7. Moreover, X is 2-regular.

**Case III**:  $Q = Z_{p^2} \times Z_p$ . Let  $Q = Z_{p^2} \times Z_p = \langle x, y \rangle$ , where x has order  $p^2$  and y has order p. Since  $z_1, z_2$  and  $z_3$  have the same order and  $Z_{p^2} \times Z_p$  can not be generated by elements of order p, each  $z_i$  (i = 1,2,3) hase order  $p^2$ . By Proposition 2.2, we can assume that  $z_1 = x, z_2 = x^{i_1}y^{j_1}$  and  $z_3 = x^{i_2}y^{j_2}$  such that  $j_1, j_2 \neq 0 \pmod{p}$ . By Table 1, we have the following relations:

$$x^{\alpha^{*}} = x^{i_{2}} y^{j_{2}}, (y^{j_{1}})^{\alpha^{*}} = x^{-1-i_{1}-i_{2}-i_{1}i_{2}} y^{-j_{1}-j_{2}-i_{1}j_{2}}, (y^{j_{2}})^{\alpha^{*}} = x^{1-i_{1}i_{2}^{2}} y^{-i_{2}j_{2}},$$
  
$$x^{\beta^{*}} = x^{i_{1}} y^{j_{1}}, (y^{j_{1}})^{\beta^{*}} = x^{i_{2}-i_{1}^{2}} y^{j_{2}-i_{1}j_{1}}, (y^{j_{2}})^{\beta^{*}} = x^{1-i_{1}i_{2}} y^{-i_{2}j_{1}}.$$

Since  $(y^{j_1})^{\alpha^*}, (y^{j_2})^{\alpha^*}, (y^{j_1})^{\beta^*}$  and  $(y^{j_2})^{\beta^*}$  have order p, we have the following equations:

$$(1) - 1 - i_1 - i_2 - i_1 i_2 = 0, (2) - i_2^2 = 0,$$
  
$$(3) i_2 - i_1^2 = 0, (4) - i_1 i_2 = 0.$$

where all equations containing the scalars in  $Z_p$  are to be taken modulo p and the symbol mod p is omitted. By Eq. (2), we have  $i_2 = 1$  or  $i_2 = -1$ . Suppose  $i_2 = 1$ . Then, by Eq. (4),  $i_1 = 1$  and so by Eq. (1), 4 = 0, but it is impossible.

**Case IV**:  $Q = N(p^2, p)$ . We have  $(yx)^i = z^{\frac{1}{2}i(i-1)}y^i x^i$  where z = [x, y]. By using this relation, we can get the equations similar to Case III. Thus, the proof of it is omitted.

**Case V:** Q = N(p, p, p). Let  $N(p, p, p) := \langle x, y, z | x^p = y^p = z^p = 1, [x, y] = z, [z, x] = [z, y] = 1 \rangle$ . Since  $N(p, p, p) = \langle z_1, z_2, z_3 \rangle$ , we assume that  $z_1 = x, z_2 = y$  and  $z_3 = z$  by Proposition 2.2. In this case, one can easily check that  $\beta^*$  can not be an automorphism of Q. Thus,  $\beta$  does not lift, a contradiction.

We remark that the graph  $EC_{p^3}$  is defined for each prime p. On the other hand, for prime  $p \le 7$ , there is one unique cubic symmetric graph of order  $4p^3$ , so we can identify these graphs with  $EC_{p^3}$ . Furthermore, these graphs are 2-regular.

Now, let X be a cubic symmetric graph of order  $4p^3$ , where p is a prime. By above for prime  $p \le 7$ , X is isomorphic to  $EC_{p^3}$ . By Lemma 3.1, for prime p > 7, it is proved that X is a Q-regular covering of  $K_4$ . The normality of Q implies that the fibre-preserving group is arc-transitive and then, by Lemma 3.2, X is isomorphic to  $EC_{p^3}$ . So,

**Corollary 3.2.** Let p be a prime and X be a cubic symmetric graph of order  $4p^3$ . Then, X is isomorphic to one of graphs  $EC_{p^3}$ . Moreover, X is 2-regular.

Notice that there is no cubic semisymmetric graph of order  $4p^3$ , where p is a prime. So, by [4, Theorem 1.1] and Corollary 3.2, Theorem 1.1 is easily proved. Then, we omit extra explanations.

## ACKNOWLEDGMENTS

This research work has been supported by Islamic Azad University, South-Tehran Branch.

#### REFERENCES

- 1. ALAEIYAN, M., GHASEMI, M., Cubic edge-transitive graphs of order 8p<sup>2</sup>, Austral. Math. Soc., 77, pp. 315–323, 2008.
- 2. ALAEIYAN, M., HOSSEINIPOOR, M.K., *Calassifying cubic edge-transitive graphs of order 8p*, Proc. Indian Acad. Sci.(Math.Sci.), **119**, *5*, pp. 647–653, 2009.
- 3. ALAEIYAN, M., ONAGH, B.N., Cubic edge-transitive graphs of order  $4p^2$ , Acta Mathematica UC, LXXVIII, 2, pp. 183–186, 2009.
- 4. ALAEIYAN, M., ONAGH, B.N., Semisymmetric cubic graphs of order  $4p^n$ , Acta Universitatis Apulensis, 19, pp. 153–158, 2009.
- 5. CONDER, M., Trivalent (cubic) symmetric graphs on up to 2048 vertices, www.math.auckland.ac.nz/conder, 2006.
- 6. DJOKOVIĆ, D.Z., MILLER, G.L., Regular groups of automorphisms of cubic graphs, J. Combin. Theory Ser. B, 29, pp. 105–230, 1980.
- 7. DU, S.F., XU, M.Y., A classification of semisymmetric graphs of order 2pq, Com. in Algebra, 28, 6, pp. 2685–2715, 2000.
- 8. FENG, Y.Q., KWAK, J.H., WANG, K., *Classifying cubic symmetric graphs of order*  $_{8p}$  or  $_{8p}{}^2$ , European Journal of Combinatorics, **26**, pp. 1033–1052, 2005.
- 9. FENG, Y.Q., KWAK, J.H., XU, M.Y., Cubic s-Regular Graphs of Order 2p<sup>3</sup>, J. Graph Theory, **52**, pp. 341–352, 2006.
- 10. FENG, Y.Q., KWAK, J.H., *Classifying cubic symmetric graphs of order*  $10_p$  or  $10_p^2$ , Science in China: Series A Mathematics, **49**, *3*, pp. 300–319, 2006.
- 11. FENG, Y.Q., KWAK, J.H., Cubic symmetric graphs of order twice an odd prime-power, J. Aust. Math. Soc., 81, pp. 153–164, 2006.
- 12. FENG, Y.Q., KWAK, J.H., Cubic symmetric graphs of order a small number times a prime or a prime square, Journal Combin. Theory, Ser. B, **97**, pp. 627–646, 2007.
- 13. FOLKMAN, J., Regular line-symmetric graphs, J. Combin. Theory, 3, pp. 215–232, 1967.
- 14. GORENSTEIN, D., Finite simple Groups, Plenum Press, New York, 1982.
- 15. GROSS, J.L., TUCKER, T.W., *Generating all graph covering by permutation voltages assignment*, Discrete Math., **18**, pp. 273–283, 1977.
- 16. LORIMER, P., Vertex-transitive graphs: Symmetric graphs of prime valency, J. Graph Theory, 8, pp. 55–68, 1984.
- 17. LU, Z., WANG, C.Q., XU, M.Y., On semisymmetric cubic graphs of order  $6p^2$ , Science in China Ser. A Mathematics, 47, pp. 11–17, 2004.
- 18. MALNIC, A., Group actions, covering and lifts of automorphisms, Discrete Math., 182, pp. 203–218, 1998.
- MALNIC, A., MARUSIC, D., WANG, C.Q., Cubic edge-transitive graphs of order 2p<sup>3</sup>, Discrete Math., 274, pp. 187–198, 2004.
- 20. OH, J.M., A classification of cubic s -regular graphs of order 14p, Discrete Math., 309, 9, pp. 2721–2726, 2009.
- 21. OH, J.M., A classification of cubic s -regular graphs of order 16p, Discrete Math., 309, 10, pp. 3150-3155, 2009.
- 22. SKOVERIERA, M., A construction to the theory of voltage groups, Discrete Math., 61, pp. 281–292, 1986.
- 23. TUTTE, W.T., A family of cubical graphs, Proc. Cambridge Phios. Soc., 43, pp. 459–574, 1947.
- 24. WANG, C.Q., Semisymmetric cubic graphs of order  $2p^2q$ , Com<sup>2</sup>MaC Preprint Series, 2002.

Received November 9, 2011