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A graph is called edge-transitive if its automorphism group acts transitively on its edge set. In this 
paper, we classify all connected cubic edge-transitive graphs of order 34 p  for each prime p . 
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1. INRODUCTION 

Throughout this paper, graphs are assumed to be finite, simple, undirected and connected. For the 
group-theoretic concepts and notations not defined here we refer to [14]. 

For a graph X , we denote by )(XV , )(XE , )(XA and )(XAut  the vertex set, the edge set, the arc set 
and the full automorphism group of X , respectively. If a subgroup G  of )(XAut  acts transitively on )(XV , 

)(XE  and )(XA  we say that X is G -vertex-transitive, G -edge-transitive and G -arc-transitive, respectively. 
In the special case, when )(XAutG = we say that X  is vertex-transitive, edge-transitive and arc-transitive (or 
symmetric), respectively. A regular G -edge-transitive but not G -vertex-transitive graph will be referred to 
as a G -semisymmetric graph. In particular, if )(XAutG = , the graph is said to be semisymmetric. 

An s -arc in a graph X  is an ordered )1( +s -tuple ),,,,( 110 ss vvvv −…  of vertices of X  such that 1−iv   is 
adjacent to iv  for si ≤≤1  and 11 +− ≠ ii vv  for si ≤≤1 . A graph X  is said to be s -arc-transitive if )(XAut  is 
transitive on the set of s -arcs in X . A graph X  is said to be s -regular if )(XAut  acts regularly on the set of 
s -arcs in X . Tutte [23] showed that every finite connected cubic symmetric graph is s -regular for some s , 

51 ≤≤ s . A subgroup of )(XAut  is said to be s -regular if it acts regularly on the set of s -arcs in X . The 
classification of cubic symmetric or semisymmetric graphs of different orders is given in many papers. Note 
that a cubic edge-transitive graph is either symmetric or semisymmetric and then, for classifying cubic edge-
transitive graphs of certain order, we must investigate both symmetric and semisymmetric ones. So far, cubic 
edge-transitive graphs of orders p2  [13, 11], 22 p  [13,11], p4  [4,12], 24 p  [3,12], p6  [7,12], 26 p  [17, 12], 

p8  [2,8], 28 p  [1, 8], p10  [7,10], 210 p  [24, 10], p14  [7, 20] and 32 p  [19, 9] have been classified. In this 
paper, we want to classify all connected cubic edge-transitive graphs of order 34 p , where p  is a prime. It is 
sufficient to classify cubic symmetric graphs of order 34 p  for each prime p , because in [4, Theorem 1.1] we 
proved that there is no cubic semisymmetric graph of order 34 p , where p  is a prime. 

Now, we need to introduce a new graph as titled 3pEC  in [12]. Let 4K  be the complete graph of order 

4. We identify the vertex (Fig. 1) set of 4K  with },,,{ dcba . Let p  be a prime and 3
pΖ be the 3-dimensional 

row vector space over the field pZ . Take the standard basis vectors )0,0,1(1 =e , )0,1,0(2 =e  and )1,0,0(3 =e . 

The graph 3pEC is defined with the vertex set 3
4 )()( 3 pp ZKVECV ×=  and the edge set )( 3pECE  as following: 

}.|),)(,(),,)(,(),,)(,(),,)(,(),,)(,(),,)(,{()( 3
3213 pp ZxexbxdexdxcexcxbxdxaxcxaxbxaECE ∈+++=  
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THEOREM 1.1. Let p  be a prime and X  be a edge-transitive cubic graph of order 34 p . Then, X  is 
isomorphic to one of 3pEC  for a prime p . Moreover, X  is a 2-regular symmetric graph.  

2. PRELIMINARIES 

Let X  be a graph and N  be a subgroup of )(XAut . For )(, XVvu ∈ , denote by },{ vu  the edge incident 
to u  and v  in X , and by )(uN X  we denote the set of vertices adjacent to u  in X . The quotient graph NX  
induced by N  is defined as the graph such that the set Σ  of N -orbits in )(XV  is the vertex set of NX  and 

Σ∈CB,  are adjacent if and only if there exist Bu∈  and Cv∈  such that )(},{ XEvu ∈ . 
A graph X~  is called a covering of a graph X  with projection XX →℘

~:  if there is a surjection 
)()~(: XVXV →℘  such that )()~(:| ~)~(~ vNvN XXvN X

→℘  is a bijection for any vertex )(XVv∈  and )(~ 1 vv −℘∈ . A 

covering X~  of X  with a projection ℘  is said to be regular (or K -covering) if there is a semiregular 
subgroup K  of the automorphism group )~(XAut  such that graph  X  is isomorphic to the quotient graph 

KX~ , say by h , and the quotient map KXX ~~
→  is the composition h℘  of ℘  and h ;to emphasize this we 

sometimes write K℘  instead of just ℘ . The fibre of an edge or a vertex is its preimage under ℘ . An 
automorphism of X~  is said to be fibre-preserving if it maps a fibre to a fibre, while every covering 
transformation maps a fibre on to itself. All of fibre-preserving automorphisms form a group called the fibre-
preserving group. 

Let K  be a finite group. A voltage assignment (or, K -voltage assignment) of X  is a function 
: ( )A X Kξ → with the property that 1 1( ) ( ( ))a a− −ξ = ξ  for each arc )(XAa∈ . The values of ξ  are called 

voltages, and K  is the voltage group. The graph ( , )Cov X X Kξξ = ×  derived from a voltage assignment 
: ( )A X Kξ →  has vertex set KXV ×)(  and edge set KXE ×)( , so that an edge ),( ge  of KXE ×)(  joins a 

vertex ),( gu  to ( , ( ))v g aξ  for )(),( XAvua ∈=  and Kg ∈ , where },{ vue = . Giving a spanning tree T of the 
graph X , a voltage assignment ξ  is said to be T -reduced if the voltages on the tree arcs are the identity. 

Gross and Tucker [15] showed that every regular covering X~  of a graph X  can be derived from a  
T -reduced voltages assignment ξ  with respect to an arbitrary fixed spanning tree T  of X . It is clear that if 
ξ  is reduced, the derived graph X Kξ×  is connected if and only if the voltages on the cotree arcs generate 
the voltages group K . 

Let X~  be a K -covering of X  with a projection ℘ . If ( )Aut Xα∈  and ( )Aut Xα∈ ��  satisfy α℘=℘α� , 
we call α�  a lift of α , and α  the projection of α� . The lifts and the projections of such subgroups are of 
course subgroups in )~(XAut  and )(XAut , respectively. A regular covering projection ℘  is called arc-
transitive if a some subgroup )~(XAutG ≤  lifts along ℘ , which G  is an arc-transitive subgroup. 

Let X K Xφ× →  be a connected K -covering. Given ( )Aut Xα∈ , we define a function α  from the 
set of voltages on fundamental closed walks based at a fixed vertex )(XVv∈  to the voltage group K  by 

( ( )) ( ),C Cα αφ = φ  

where C  ranges over all fundamental closed walks at v , and ( )Cφ  and ( )C αφ  are the voltages on C  
and ,C α  respectively. 

The next proposition is a special case of [18, Theorem 4.2]. 
 
PROPOSITION 2.1. Let X K Xα× →  be a connected K -covering. Then, an automorphism α of X  

lifts if and only if ( , ) ( , )u v u vσφ = ψ  extends to an automorphism of K . 
Two coverings 1

~X  and 2
~X  of X with projections 1℘  and 2℘  respectively, are said to be isomorphic if 

there exists a graph isomorphism 21
~~:~ XX →α  such that 2 1α℘ =℘� . 
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We quote the following propositions. 
 

PROPOSITION 2.2 [22]. Two connected regular coverings X Kφ×  and X Kψ× , where φ  and ψ  
are T -reduced are isomorphic if and only if there exists an automorphism ( )Aut Kσ∈  such that 

( , ) ( , )u v u vσφ = ψ  for any cotree arc ),( vu  of X . 
 

PROPOSITION 2.3 [16, Theorem 9]. Let X  be a connected symmetric graph of prime valency and G  
an s -regular subgroup of )(XAut  for some 1≥s . If a normal subgroup N  of G  has more than two orbits, 
then it is semiregular and NG  is an s -regular subgroup of )( NXAut , where NX  is the quotient graph of X 
corresponding to the orbits of N . Furthermore, X  is a N -regular covering of NX . 
 

PROPOSITION 2.4 [6, Propositions 2-5]. Let X  be a connected cubic symmetric graph and G  be an 
s -regular subgroup of )(XAut . Then the stabilizer vG  of )(XVv∈  is isomorphic to 42333 ,,, SZSSZ × , or 

24 ZS ×  for s = 1, 2, 3, 4 or 5, respectively. 
 

PROPOSITION 2.5 [12, Theorem 6.2]. Let X  be a connected cubic symmetric graph of order p4  or 
24 p  for a prime p . Then X  is isomorphic to the 2-regular hypercube 3Q  of order 8, the 2-regular Petersen 

generalized graphs P (8, 3) or P (10, 7) of order 16 or 20 respectively, the 3-regular Desargues graph of 
order 20 or the 3-regular Coxeter graph 28C  of order 28. 

3. MAIN RESUALTS 

For a positive integer n , we denote by nZ  the cyclic group of order n . Note that up to isomorphism 
there are exactly five groups of order 3p  for each odd prime p . These five groups are given by the following 
presentations: 

,,, 23
3

pppp ZZZZ ×  

22( , ) : , | 1,[ , ] ,p p pN p p x y x y x y x= 〈 = = = 〉  

( , , ) : , , | 1,[ , ] ,[ , ] [ , ] 1 .p p pN p p p x y z x y z x y z z x z y= 〈 = = = = = = 〉  

 
Fig. 1 – A spanning tree and a voltage assignment on 4K . 
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At the first, we shall classify the cubic symmetric graphs of order 34 p  for each prime p . For each 
prime 7≤p  by [5], there exists one unique cubic symmetric graph of order 34 p . Moreover, these graphs are 
2-regular. So, we can assume that 11≥p . 
 

LEMMA 3.1. Suppose that X  is a cubic symmetric graph of order 34 p , where 11≥p  is an odd prime. 
Set  )(: XAutA = . Moreover suppose that )(: AOQ p=  is the maximal normal p -subgroup of A . Then 

3|| pQ = . 

Proof. Let X  be a cubic symmetric graph of order 34 p , where 11≥p  is an odd prime. Then by [23],  
is at most 5-regular. By Proposition 2.4, the stabilizer vA  of )(XVv∈  is a }3,2{ -group. Moreover, 

32|| 1−= s
vA  and hence 3132|| pA s+= , for some 51 ≤≤ s . Now, we intend to prove that 3|| pQ = . 

We first suppose that 1|| =Q . Let N  be a minimal normal subgroup of A . It is obvious that N  must be 
solvable because otherwise N  is isomorphic to 5A  or )7,2(PSL , a contradiction to 11≥p . So, N  is an 
elementary abelian 2-group, 3-group or p -group. Since 1|| =Q , N  can not be an elementary abelian p -
group. Also, N  can not be an elementary abelian 3-group because otherwise vAN ≤ , where )(XVv∈  and N  
is not semiregular, which contradicts Proposition 2.3. Thus, N  is an elementary abelian 2-group. It is easy to 
check that N  has more than two orbits and then by Proposition 2.3, it is semiregular. Therefore, 2|| =N  or 4. 
Now suppose that 2|| =N . Let NM  be a minimal normal subgroup of NA . By Proposition 2.3, NA  is an 
s -regular subgroup of )( NXAut . Clearly, NM  is solvable and then elementary abelian. If NM  is an 
elementary abelian 2-group, it is semiregular by Proposition 2.3, so that 2|| =NM . It follows that the 
quotient graph MX  has odd number of vertices and valency 3, which is impossible. Also, similarly as above 

NM can not be an elementary abelian 3-group. Thus, NM  is an elementary abelian p -group. So, 
22,2|| ppM =  or 32 p . Let )(MSylP p∈ . Then we can easily see that P  is normal and also characteristic in 

M . Then, A  has a normal subgroup of order 2, pp  or 3p , a contradiction to 1|| =Q . It leads to 2|| ≠N .  
Now, if 4|| =N , then the quotient graph NX  must have order 3p , a contradiction. Therefore, 1|| ≠Q . 
Finally, if pQ =||  or 2p , then Q  has more than two orbits and then by Proposition 2.3, QA  is an s -regular 
subgroup of ),( QXAut  where QX is of order 24 p or ,4 p respectively. But by Proposition 2.5, there is no 

symmetric cubic graph QX  of these orders for prime 11≥p , a contradiction. Therefore, 3|| pQ = . Similarly 
as previous, Q  has more than two orbits and then by Proposition 2.3, QX  is a symmetric cubic graph of 

order 4. Then QX  must isomorphic to the complete graph 4K . Indeed, X  is a Q -regular covering of the 

complete graph 4K , where 3|| pQ = .                                                                                                               
 

LEMMA 3.2. Let 11≥p  be a prime and X  be an arc-transitive Q -regular covering of the complete 
graph 4K , where 3|| pQ = . Then, X  is a 3

pZ -covering of 4K  and moreover, X  is 2-regular. 

Proof. Let 4X K Qφ= ×  be a connected Q -covering of 4K satisfying the hypotheses, where 0=φ  on 
the spanning tree T as illustrated by plain lines in Fig. 1. We assign voltages 21, zz  and 3z  in Q  to the cotree 
arcs ),(),,( dccb  and ),( bd , respectively. The connectivity of X  implies that 〉〈= 321 ,, zzzQ . Set ))(( cdab=α  
and ( )bcdβ = .The arc-transitivity of the regular projection φ  implies that α  and β  lift. Let C  be a 
fundamental cycle in 4K . Then, C  is acdabc,  or adb  and their images with corresponding voltages on 4K  
are given in Table 1. 
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Table 1 

Fundamental cycles and their images with corresponding voltages on 4K  

C  ( )Cφ  C α  ( )C αφ  C β  ( )C βφ  

abc  1z  bad  3z  acd  2z  
acd  2z  bdc  1 2 3z z z− − −  adb  3z  
adb  3z  bca  1z  abc  1z  

 
The mapping α  from the set of voltages on the three fundamental cycles of 4K  to the voltage group Q  is 
defined by ( ) ( )C Cα αφ = φ , where C  ranges over these three cycles. Similarly, one can define β . Since α  
and β  lift, by Proposition 2.1, α  and β  can be extended to automorphisms of Q , say *α  and *β , 
respectively. Then, *

1 2z zβ =  and *

2 3z zβ =  imply that 21, zz  and 3z  have the same order. As 3|| pQ = , we 
have five possible cases: 3 2

3 2, , , ( , )p pp pQ Z Z Z Z N p p= × or ).,,( pppN  

Case I: 3pZQ = . In this case, because 21, zz  and 3z  have the same order, .321 〉〈=〉〈=〉〈= zzzQ  Thus, 

one may assume 11 =z . Let *1 kβ = . By considering the images of 21, zz  and 3z  under *β , we have 
2

32 , kzkz ==  and 13 =k  in 3pZ . Let l=
*

1α . Similarly, by considering the images of 21, zz  and 3z  under 
*α , we have 2kl =  and 12 =lk . Thus, lk =  and so 1=k . It follows that 1321 === zzz . Since 

*
2 1 2 3z z z zα = − − − , we can conclude that 04 =  (mod 3p ) that is impossible. 

Case II: 3
pZQ = . In proof of [12, Theorem 6.1 ], this case has been investigated and it has been proved 

that X  is isomorphic to one of graphs 3pEC  for a prime 7>p . Moreover, X  is 2-regular. 

Case III: pp ZZQ ×= 2 . Let 〉〈=×= yxZZQ pp ,2 , where x  has order 2p  and y  has order p . Since 

21, zz  and 3z  have the same order and pp ZZ ×2  can not be generated by elements of order p , each iz   

(i = 1,2,3) hase order 2p . By Proposition 2.2, we can assume that 11
21 , ji yxzxz ==  and  22

3
ji yxz =  such that 

0, 21 ≠jj  (mod p ). By Table 1, we have the following relations: 
2* * *

12 2 1 1 2 1 2 1 2 1 2 2 2 2 211, ( ) , ( ) ,i ii j j i i i i j j i j j i jx x y y x y y x y−− − − − − − − −α α α= = =  
2* * *

21 1 1 1 2 1 1 2 1 2 2 11, ( ) , ( ) .i ii j j j i j j i i i jx x y y x y y x y− − − −β β β= = =  

Since * * *
1 2 1( ) , ( ) , ( )j j jy y yα α β  and *

2( )jy β have order p , we have the following equations: 
2

1 2 1 2 2(1) 1 0, (2)1 0,i i i i i− − − − = − =  
2

2 1 1 2(3) 0, (4)1 0.i i i i− = − =  

where all equations containing the scalars in pZ  are to be taken modulo p  and the symbol mod p  is 
omitted. By Eq. (2), we have 12 =i  or 12 −=i . Suppose 12 =i . Then, by Eq. (4), 11 =i  and so by Eq. (1),  
4 = 0, but it is impossible.  

Case IV: ),( 2 ppNQ = . We have iiiii xyzyx
)1(

2
1

)(
−

=  where ].,[ yxz =  By using this relation, we can get 
the equations similar to Case III. Thus, the proof of it is omitted. 

Case V: ),,( pppNQ = . Let .1],[],[,],[,1|,,:),,( 〉======〈= yzxzzyxzyxzyxpppN ppp  Since 
,,,),,( 321 〉〈= zzzpppN  we assume that yzxz == 21 ,  and zz =3  by Proposition 2.2. In this case, one can 

easily check that *β can not be an automorphism of Q . Thus, β  does not lift, a contradiction.   
We remark that the graph 3pEC  is defined for each prime p . On the other hand, for prime 7≤p , there 

is one unique cubic symmetric graph of order 34 p , so we can identify these graphs with 3pEC . Furthermore, 
these graphs are 2-regular. 
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Now, let X  be a cubic symmetric graph of order 34 p , where p  is a prime. By above for prime 7≤p , 
X  is isomorphic to 3pEC . By Lemma 3.1, for prime 7>p , it is proved that X  is a Q -regular covering of 

4K . The normality of Q implies that the fibre-preserving group is arc-transitive and then, by Lemma 3.2,  X  
is isomorphic to 3pEC . So, 

Corollary 3.2. Let p  be a prime and X  be a cubic symmetric graph of order 34 p . Then, X is 
isomorphic to one of graphs 3pEC . Moreover, X  is 2-regular. 

Notice that there is no cubic semisymmetric graph of order 34 p , where p  is a prime. So, by [4, 
Theorem 1.1] and Corollary 3.2, Theorem 1.1 is easily proved. Then, we omit extra explanations. 
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