A CLASSIFICATION OF CUBIC EDGE-TRANSITIVE GRAPHS OF ORDER $4 \boldsymbol{p}^{\mathbf{3}}$

Mehdi ALAEIYAN ${ }^{1}$, Bibi Naimeh ONAGH ${ }^{2}$
${ }^{1}$ Islamic Azad University, South-Tehran Branch, Tehran, Iran
${ }^{2}$ Golestan University, Department of Mathematics, Gorgan, Iran
E-mail: m-alaeiyan@azad.ac.ir

Abstract

A graph is called edge-transitive if its automorphism group acts transitively on its edge set. In this paper, we classify all connected cubic edge-transitive graphs of order $4 p^{3}$ for each prime p.

Key words: Regular coverings, Edge-transitive graphs, Semisymmetric graphs, Symmetric graphs.

1. INRODUCTION

Throughout this paper, graphs are assumed to be finite, simple, undirected and connected. For the group-theoretic concepts and notations not defined here we refer to [14].

For a graph X, we denote by $V(X), E(X), A(X)$ and $\operatorname{Aut}(X)$ the vertex set, the edge set, the arc set and the full automorphism group of X, respectively. If a subgroup G of $\operatorname{Aut}(X)$ acts transitively on $V(X)$, $E(X)$ and $A(X)$ we say that X is G-vertex-transitive, G-edge-transitive and G-arc-transitive, respectively. In the special case, when $G=\operatorname{Aut}(X)$ we say that X is vertex-transitive, edge-transitive and arc-transitive (or symmetric), respectively. A regular G-edge-transitive but not G-vertex-transitive graph will be referred to as a G-semisymmetric graph. In particular, if $G=\operatorname{Aut}(X)$, the graph is said to be semisymmetric.

An s-arc in a graph X is an ordered $(s+1)$-tuple $\left(v_{0}, v_{1}, \ldots, v_{s-1}, v_{s}\right)$ of vertices of X such that v_{i-1} is adjacent to v_{i} for $1 \leq i \leq s$ and $v_{i-1} \neq v_{i+1}$ for $1 \leq i \leq s$. A graph X is said to be s-arc-transitive if $\operatorname{Aut}(X)$ is transitive on the set of s-arcs in X. A graph X is said to be s-regular if $\operatorname{Aut}(X)$ acts regularly on the set of s-arcs in X. Tutte [23] showed that every finite connected cubic symmetric graph is s-regular for some s, $1 \leq s \leq 5$. A subgroup of $\operatorname{Aut}(X)$ is said to be s-regular if it acts regularly on the set of s-arcs in X. The classification of cubic symmetric or semisymmetric graphs of different orders is given in many papers. Note that a cubic edge-transitive graph is either symmetric or semisymmetric and then, for classifying cubic edgetransitive graphs of certain order, we must investigate both symmetric and semisymmetric ones. So far, cubic edge-transitive graphs of orders $2 p[13,11], 2 p^{2}[13,11], 4 p[4,12], 4 p^{2}[3,12], 6 p[7,12], 6 p^{2}[17,12]$, $8 p[2,8], 8 p^{2}[1,8], 10 p[7,10], 10 p^{2}[24,10], 14 p[7,20]$ and $2 p^{3}[19,9]$ have been classified. In this paper, we want to classify all connected cubic edge-transitive graphs of order $4 p^{3}$, where p is a prime. It is sufficient to classify cubic symmetric graphs of order $4 p^{3}$ for each prime p, because in [4, Theorem 1.1] we proved that there is no cubic semisymmetric graph of order $4 p^{3}$, where p is a prime.

Now, we need to introduce a new graph as titled $E C_{p^{3}}$ in [12]. Let K_{4} be the complete graph of order 4. We identify the vertex (Fig. 1) set of K_{4} with $\{a, b, c, d\}$. Let p be a prime and Z_{p}^{3} be the 3 -dimensional row vector space over the field Z_{p}. Take the standard basis vectors $e_{1}=(1,0,0), e_{2}=(0,1,0)$ and $e_{3}=(0,0,1)$. The graph $E C_{p^{3}}$ is defined with the vertex set $V\left(E C_{p^{3}}\right)=V\left(K_{4}\right) \times Z_{p}^{3}$ and the edge set $E\left(E C_{p^{3}}\right)$ as following:

$$
E\left(E C_{p^{3}}\right)=\left\{(a, x)(b, x),(a, x)(c, x),(a, x)(d, x),(b, x)\left(c, x+e_{1}\right),(c, x)\left(d, x+e_{2}\right),(d, x)\left(b, x+e_{3}\right) \mid x \in Z_{p}^{3}\right\} .
$$

THEOREM 1.1. Let p be a prime and X be a edge-transitive cubic graph of order $4 p^{3}$. Then, X is isomorphic to one of $E C_{p^{3}}$ for a prime p. Moreover, X is a 2-regular symmetric graph.

2. PRELIMINARIES

Let X be a graph and N be a subgroup of $\operatorname{Aut}(X)$. For $u, v \in V(X)$, denote by $\{u, v\}$ the edge incident to u and v in X, and by $N_{X}(u)$ we denote the set of vertices adjacent to u in X. The quotient graph X_{N} induced by N is defined as the graph such that the set Σ of N-orbits in $V(X)$ is the vertex set of X_{N} and $B, C \in \Sigma$ are adjacent if and only if there exist $u \in B$ and $v \in C$ such that $\{u, v\} \in E(X)$.

A graph \tilde{X} is called a covering of a graph X with projection $\wp: \tilde{X} \rightarrow X$ if there is a surjection $\wp: V(\tilde{X}) \rightarrow V(X)$ such that $\left.\wp\right|_{N_{\tilde{X}}(\widetilde{v})}: N_{\tilde{X}}(\widetilde{v}) \rightarrow N_{X}(v)$ is a bijection for any vertex $v \in V(X)$ and $\widetilde{v} \in \wp^{-1}(v)$. A covering \tilde{X} of X with a projection \wp is said to be regular (or K-covering) if there is a semiregular subgroup K of the automorphism group $\operatorname{Aut}(\tilde{X})$ such that graph X is isomorphic to the quotient graph \widetilde{X}_{K}, say by h, and the quotient map $\widetilde{X} \rightarrow \widetilde{X}_{K}$ is the composition $\wp h$ of \wp and h;to emphasize this we sometimes write \wp_{K} instead of just \wp. The fibre of an edge or a vertex is its preimage under \wp. An automorphism of \tilde{X} is said to be fibre-preserving if it maps a fibre to a fibre, while every covering transformation maps a fibre on to itself. All of fibre-preserving automorphisms form a group called the fibrepreserving group.

Let K be a finite group. A voltage assignment (or, K-voltage assignment) of X is a function $\xi: A(X) \rightarrow K$ with the property that $\xi\left(a^{-1}\right)=(\xi(a))^{-1}$ for each arc $a \in A(X)$. The values of ξ are called voltages, and K is the voltage group. The graph $\operatorname{Cov}(X, \xi)=X \times{ }_{\xi} K$ derived from a voltage assignment $\xi: A(X) \rightarrow K$ has vertex set $V(X) \times K$ and edge set $E(X) \times K$, so that an edge (e, g) of $E(X) \times K$ joins a vertex (u, g) to $(v, g \xi(a))$ for $a=(u, v) \in A(X)$ and $g \in K$, where $e=\{u, v\}$. Giving a spanning tree T of the graph X, a voltage assignment ξ is said to be T-reduced if the voltages on the tree arcs are the identity.

Gross and Tucker [15] showed that every regular covering \tilde{X} of a graph X can be derived from a T-reduced voltages assignment ξ with respect to an arbitrary fixed spanning tree T of X. It is clear that if ξ is reduced, the derived graph $X \times_{\xi} K$ is connected if and only if the voltages on the cotree arcs generate the voltages group K.

Let \tilde{X} be a K-covering of X with a projection \wp. If $\alpha \in \operatorname{Aut}(X)$ and $\tilde{\alpha} \in \operatorname{Aut}(\tilde{X})$ satisfy $\tilde{\alpha} \wp=\wp \alpha$, we call $\tilde{\alpha}$ a lift of α, and α the projection of $\tilde{\alpha}$. The lifts and the projections of such subgroups are of course subgroups in $\operatorname{Aut}(\tilde{X})$ and $\operatorname{Aut}(X)$, respectively. A regular covering projection \wp is called arctransitive if a some subgroup $G \leq \operatorname{Aut}(\tilde{X})$ lifts along \wp, which G is an arc-transitive subgroup.

Let $X \times{ }_{\phi} K \rightarrow X$ be a connected K-covering. Given $\alpha \in \operatorname{Aut}(X)$, we define a function $\bar{\alpha}$ from the set of voltages on fundamental closed walks based at a fixed vertex $v \in V(X)$ to the voltage group K by

$$
(\phi(C))^{\bar{\alpha}}=\phi\left(C^{\alpha}\right)
$$

where C ranges over all fundamental closed walks at v, and $\phi(C)$ and $\phi\left(C^{\alpha}\right)$ are the voltages on C and C^{α}, respectively.

The next proposition is a special case of [18, Theorem 4.2].
PROPOSITION 2.1. Let $X \times{ }_{\alpha} K \rightarrow X$ be a connected K-covering. Then, an automorphism α of X lifts if and only if $\phi(u, v)^{\sigma}=\psi(u, v)$ extends to an automorphism of K.

Two coverings \tilde{X}_{1} and \tilde{X}_{2} of X with projections \wp_{1} and \wp_{2} respectively, are said to be isomorphic if there exists a graph isomorphism $\tilde{\alpha}: \tilde{X}_{1} \rightarrow \tilde{X}_{2}$ such that $\tilde{\alpha} \wp_{2}=\wp_{1}$.

We quote the following propositions.
PROPOSITION 2.2 [22]. Two connected regular coverings $X \times{ }_{\phi} K$ and $X \times{ }_{\psi} K$, where ϕ and ψ are T-reduced are isomorphic if and only if there exists an automorphism $\sigma \in \operatorname{Aut}(K)$ such that $\phi(u, v)^{\sigma}=\psi(u, v)$ for any cotree $\operatorname{arc}(u, v)$ of X.

PROPOSITION 2.3 [16, Theorem 9]. Let X be a connected symmetric graph of prime valency and G an s-regular subgroup of $\operatorname{Aut}(X)$ for some $s \geq 1$. If a normal subgroup N of G has more than two orbits, then it is semiregular and G / N is an s-regular subgroup of $\operatorname{Aut}\left(X_{N}\right)$, where X_{N} is the quotient graph of X corresponding to the orbits of N. Furthermore, X is a N-regular covering of X_{N}.

PROPOSITION 2.4 [6, Propositions 2-5]. Let X be a connected cubic symmetric graph and G be an s-regular subgroup of $\operatorname{Aut}(X)$. Then the stabilizer G_{v} of $v \in V(X)$ is isomorphic to $Z_{3}, S_{3}, S_{3} \times Z_{2}, S_{4}$, or $S_{4} \times Z_{2}$ for $s=1,2,3,4$ or 5 , respectively.

PROPOSITION 2.5 [12, Theorem 6.2]. Let X be a connected cubic symmetric graph of order $4 p$ or $4 p^{2}$ for a prime p. Then X is isomorphic to the 2-regular hypercube Q_{3} of order 8 , the 2-regular Petersen generalized graphs $P(8,3)$ or $P(10,7)$ of order 16 or 20 respectively, the 3-regular Desargues graph of order 20 or the 3-regular Coxeter graph C_{28} of order 28.

3. MAIN RESUALTS

For a positive integer n, we denote by Z_{n} the cyclic group of order n. Note that up to isomorphism there are exactly five groups of order p^{3} for each odd prime p. These five groups are given by the following presentations:

$$
\begin{gathered}
Z_{p^{3}}, Z_{p}^{3}, Z_{p^{2}} \times Z_{p}, \\
N\left(p^{2}, p\right):=\left\langle x, y \mid x^{p^{2}}=y^{p}=1,[x, y]=x^{p}\right\rangle, \\
N(p, p, p):=\left\langle x, y, z \mid x^{p}=y^{p}=z^{p}=1,[x, y]=z,[z, x]=[z, y]=1\right\rangle .
\end{gathered}
$$

Fig. 1 - A spanning tree and a voltage assignment on K_{4}.

At the first, we shall classify the cubic symmetric graphs of order $4 p^{3}$ for each prime p. For each prime $p \leq 7$ by [5], there exists one unique cubic symmetric graph of order $4 p^{3}$. Moreover, these graphs are 2-regular. So, we can assume that $p \geq 11$.

LEMMA 3.1. Suppose that X is a cubic symmetric graph of order $4 p^{3}$, where $p \geq 11$ is an odd prime. Set $A:=\operatorname{Aut}(X)$. Moreover suppose that $Q:=O_{p}(A)$ is the maximal normal p-subgroup of A. Then $|Q|=p^{3}$.

Proof. Let X be a cubic symmetric graph of order $4 p^{3}$, where $p \geq 11$ is an odd prime. Then by [23], X is at most 5-regular. By Proposition 2.4, the stabilizer A_{v} of $v \in V(X)$ is a $\{2,3\}$-group. Moreover, $\left|A_{v}\right|=2^{s-1} 3$ and hence $|A|=2^{s+1} 3 p^{3}$, for some $1 \leq s \leq 5$. Now, we intend to prove that $|Q|=p^{3}$.

We first suppose that $|Q|=1$. Let N be a minimal normal subgroup of A. It is obvious that N must be solvable because otherwise N is isomorphic to A_{5} or $\operatorname{PSL}(2,7)$, a contradiction to $p \geq 11$. So, N is an elementary abelian 2-group, 3-group or p-group. Since $|Q|=1, N$ can not be an elementary abelian p group. Also, N can not be an elementary abelian 3-group because otherwise $N \leq A_{v}$, where $v \in V(X)$ and N is not semiregular, which contradicts Proposition 2.3. Thus, N is an elementary abelian 2-group. It is easy to check that N has more than two orbits and then by Proposition 2.3, it is semiregular. Therefore, $|N|=2$ or 4. Now suppose that $|N|=2$. Let M / N be a minimal normal subgroup of A / N. By Proposition 2.3, A / N is an s-regular subgroup of $\operatorname{Aut}\left(X_{N}\right)$. Clearly, M / N is solvable and then elementary abelian. If M / N is an elementary abelian 2-group, it is semiregular by Proposition 2.3, so that $|M / N|=2$. It follows that the quotient graph X_{M} has odd number of vertices and valency 3, which is impossible. Also, similarly as above M / N can not be an elementary abelian 3 -group. Thus, M / N is an elementary abelian p-group. So, $|M|=2 p, 2 p^{2}$ or $2 p^{3}$. Let $P \in S y l_{p}(M)$. Then we can easily see that P is normal and also characteristic in M. Then, A has a normal subgroup of order p, p^{2} or p^{3}, a contradiction to $|Q|=1$. It leads to $|N| \neq 2$. Now, if $|N|=4$, then the quotient graph X_{N} must have order p^{3}, a contradiction. Therefore, $|Q| \neq 1$. Finally, if $|Q|=p$ or p^{2}, then Q has more than two orbits and then broposition 2.3, A / Q is an s-regular subgroup of $\operatorname{Aut}\left(X_{Q}\right)$, where X_{Q} is of order $4 p^{2}$ or $4 p$, respectively. But by Proposition 2.5 , there is no symmetric cubic graph X_{Q} of these orders for prime $p \geq 11$, a contradiction. Therefore, $|Q|=p^{3}$. Similarly as previous, Q has more than two orbits and then by Proposition 2.3, X_{Q} is a symmetric cubic graph of order 4. Then X_{Q} must isomorphic to the complete graph K_{4}. Indeed, X is a Q-regular covering of the complete graph K_{4}, where $|Q|=p^{3}$.

LEMMA 3.2. Let $p \geq 11$ be a prime and X be an arc-transitive Q-regular covering of the complete graph K_{4}, where $|Q|=p^{3}$. Then, X is a Z_{p}^{3}-covering of K_{4} and moreover, X is 2-regular.

Proof. Let $X=K_{4} \times_{\phi} Q$ be a connected Q-covering of K_{4} satisfying the hypotheses, where $\phi=0$ on the spanning tree T as illustrated by plain lines in Fig. 1. We assign voltages z_{1}, z_{2} and z_{3} in Q to the cotree $\operatorname{arcs}(b, c),(c, d)$ and (d, b), respectively. The connectivity of X implies that $Q=\left\langle z_{1}, z_{2}, z_{3}\right\rangle$. Set $\alpha=(a b)(c d)$ and $\beta=(b c d)$.The arc-transitivity of the regular projection ϕ implies that α and β lift. Let C be a fundamental cycle in K_{4}. Then, C is $a b c, a c d$ or $a d b$ and their images with corresponding voltages on K_{4} are given in Table 1.

Table 1
Fundamental cycles and their images with corresponding voltages on K_{4}

C	$\phi(C)$	C^{α}	$\phi\left(C^{\alpha}\right)$	C^{β}	$\phi\left(C^{\beta}\right)$
$a b c$	z_{1}	$b a d$	z_{3}	$a c d$	z_{2}
$a c d$	z_{2}	$b d c$	$-z_{1}-z_{2}-z_{3}$	$a d b$	z_{3}
$a d b$	z_{3}	$b c a$	z_{1}	$a b c$	z_{1}

The mapping $\bar{\alpha}$ from the set of voltages on the three fundamental cycles of K_{4} to the voltage group Q is defined by $\phi(C)^{\bar{\alpha}}=\phi\left(C^{\alpha}\right)$, where C ranges over these three cycles. Similarly, one can define $\bar{\beta}$. Since α and β lift, by Proposition 2.1, $\bar{\alpha}$ and $\bar{\beta}$ can be extended to automorphisms of Q, say α^{*} and β^{*}, respectively. Then, $z_{1}{ }^{\beta^{*}}=z_{2}$ and $z_{2}{ }^{\beta^{*}}=z_{3}$ imply that z_{1}, z_{2} and z_{3} have the same order. As $|Q|=p^{3}$, we have five possible cases: $Q=Z_{p^{3}}, Z_{p}^{3}, Z_{p^{2}} \times Z_{p}, N\left(p^{2}, p\right)$ or $N(p, p, p)$.

Case I: $Q=Z_{p^{3}}$. In this case, because z_{1}, z_{2} and z_{3} have the same order, $Q=\left\langle z_{1}\right\rangle=\left\langle z_{2}\right\rangle=\left\langle z_{3}\right\rangle$. Thus, one may assume $z_{1}=1$. Let $1^{\beta^{*}}=k$. By considering the images of z_{1}, z_{2} and z_{3} under β^{*}, we have $z_{2}=k, z_{3}=k^{2}$ and $k^{3}=1$ in $Z_{p^{3}}$. Let $1^{\alpha^{*}}=l$. Similarly, by considering the images of z_{1}, z_{2} and z_{3} under α^{*}, we have $l=k^{2}$ and $l k^{2}=1$. Thus, $k=l$ and so $k=1$. It follows that $z_{1}=z_{2}=z_{3}=1$. Since $z_{2}{ }^{\alpha_{*}}=-z_{1}-z_{2}-z_{3}$, we can conclude that $4=0\left(\bmod p^{3}\right)$ that is impossible.

Case II: $Q=Z_{p}^{3}$. In proof of [12, Theorem 6.1], this case has been investigated and it has been proved that X is isomorphic to one of graphs $E C_{p^{3}}$ for a prime $p>7$. Moreover, X is 2-regular.

Case III: $Q=Z_{p^{2}} \times Z_{p}$. Let $Q=Z_{p^{2}} \times Z_{p}=\langle x, y\rangle$, where x has order p^{2} and y has order p. Since z_{1}, z_{2} and z_{3} have the same order and $Z_{p^{2}} \times Z_{p}$ can not be generated by elements of order p, each z_{i} $(\mathrm{i}=1,2,3)$ hase order p^{2}. By Proposition 2.2, we can assume that $z_{1}=x, z_{2}=x^{i_{1}} y^{j_{1}}$ and $z_{3}=x^{i_{2}} y^{j_{2}}$ such that $j_{1}, j_{2} \neq 0(\bmod p)$. By Table 1, we have the following relations:

$$
\begin{gathered}
x^{\alpha^{*}}=x^{i_{2}} y^{j_{2}},\left(y^{j_{1}}\right)^{\alpha^{*}}=x^{-1-i_{1}-i_{2}-i_{1} i_{2}} y^{-j_{1}-j_{2}-i_{1} j_{2}},\left(y^{j_{2}}\right)^{\alpha^{*}}=x^{1-i_{1} i_{2}^{2}} y^{-i_{2} j_{2}}, \\
x^{\beta^{*}}=x^{i_{1}} y^{j_{1}},\left(y^{j_{1}}\right)^{\beta^{*}}=x^{i_{2}-i_{1}^{2}} y^{j_{2}-i_{1} j_{1}},\left(y^{j_{2}}\right)^{\beta^{*}}=x^{1-i_{1} i_{2}} y^{-i_{2} j_{1}} .
\end{gathered}
$$

Since $\left(y^{j_{1}}\right)^{\alpha^{*}},\left(y^{j_{2}}\right)^{\alpha^{*}},\left(y^{j_{1}}\right)^{\beta^{*}}$ and $\left(y^{j_{2}}\right)^{\beta^{*}}$ have order p, we have the following equations:

$$
\begin{gathered}
(1)-1-i_{1}-i_{2}-i_{1} i_{2}=0,(2) 1-i_{2}^{2}=0, \\
\text { (3) } i_{2}-i_{1}^{2}=0,(4) 1-i_{1} i_{2}=0
\end{gathered}
$$

where all equations containing the scalars in Z_{p} are to be taken modulo p and the symbol mod p is omitted. By Eq. (2), we have $i_{2}=1$ or $i_{2}=-1$. Suppose $i_{2}=1$. Then, by Eq. (4), $i_{1}=1$ and so by Eq. (1), $4=0$, but it is impossible.

Case IV: $Q=N\left(p^{2}, p\right)$. We have $(y x)^{i}=z^{\frac{1}{2}(i-1)} y^{i} x^{i}$ where $z=[x, y]$. By using this relation, we can get the equations similar to Case III. Thus, the proof of it is omitted.

Case V: $Q=N(p, p, p)$. Let $N(p, p, p):=\left\langle x, y, z \mid x^{p}=y^{p}=z^{p}=1,[x, y]=z,[z, x]=[z, y]=1\right\rangle$. Since $N(p, p, p)=\left\langle z_{1}, z_{2}, z_{3}\right\rangle$, we assume that $z_{1}=x, z_{2}=y$ and $z_{3}=z$ by Proposition 2.2. In this case, one can easily check that β^{*} can not be an automorphism of Q. Thus, β does not lift, a contradiction.

We remark that the graph $E C_{p^{3}}$ is defined for each prime p. On the other hand, for prime $p \leq 7$, there is one unique cubic symmetric graph of order $4 p^{3}$, so we can identify these graphs with $E C_{p^{3}}$. Furthermore, these graphs are 2 -regular.

Now, let X be a cubic symmetric graph of order $4 p^{3}$, where p is a prime. By above for prime $p \leq 7$, X is isomorphic to $E C_{p^{3}}$. By Lemma 3.1, for prime $p>7$, it is proved that X is a Q-regular covering of K_{4}. The normality of Q implies that the fibre-preserving group is arc-transitive and then, by Lemma 3.2, X is isomorphic to $E C_{p^{3}}$. So,

Corollary 3.2. Let p be a prime and X be a cubic symmetric graph of order $4 p^{3}$. Then, X is isomorphic to one of graphs $E C_{p^{3}}$. Moreover, X is 2-regular.

Notice that there is no cubic semisymmetric graph of order $4 p^{3}$, where p is a prime. So, by [4, Theorem 1.1] and Corollary 3.2, Theorem 1.1 is easily proved. Then, we omit extra explanations.

ACKNOWLEDGMENTS

This research work has been supported by Islamic Azad University, South-Tehran Branch.

REFERENCES

1. ALAEIYAN, M., GHASEMI, M., Cubic edge-transitive graphs of order 8p ${ }^{2}$, Austral. Math. Soc., 77, pp. 315-323, 2008.
2. ALAEIYAN, M., HOSSEINIPOOR, M.K., Calassifying cubic edge-transitive graphs of order $8 p$, Proc. Indian Acad. Sci.(Math.Sci.), 119, 5, pp. 647-653, 2009.
3. ALAEIYAN, M., ONAGH, B.N., Cubic edge-transitive graphs of order $4 p^{2}$, Acta Mathematica UC, LXXVIII, 2, pp. 183-186, 2009.
4. ALAEIYAN, M., ONAGH, B.N., Semisymmetric cubic graphs of order $4 p^{n}$, Acta Universitatis Apulensis, 19, pp. 153-158, 2009.
5. CONDER, M., Trivalent (cubic) symmetric graphs on up to 2048 vertices, www.math.auckland.ac.nz/conder, 2006.
6. DJOKOVIĆ, D.Z., MILLER, G.L., Regular groups of automorphisms of cubic graphs, J. Combin. Theory Ser. B, 29, pp. 105-230, 1980.
7. DU, S.F., XU, M.Y., A classification of semisymmetric graphs of order 2pq, Com. in Algebra, 28, 6, pp. 2685-2715, 2000.
8. FENG, Y.Q., KWAK, J.H., WANG, K., Classifying cubic symmetric graphs of order $8 p$ or $8 p^{2}$, European Journal of Combinatorics, 26, pp. 1033-1052, 2005.
9. FENG, Y.Q., KWAK, J.H., XU, M.Y., Cubic s-Regular Graphs of Order 2p ${ }^{3}$, J. Graph Theory, 52, pp. 341-352, 2006.
10. FENG, Y.Q., KWAK, J.H., Classifying cubic symmetric graphs of order $10 p$ or $10 p^{2}$, Science in China: Series A Mathematics, 49, 3, pp. 300-319, 2006.
11. FENG, Y.Q., KWAK, J.H., Cubic symmetric graphs of order twice an odd prime-power, J. Aust. Math. Soc., 81, pp. 153-164, 2006.
12. FENG, Y.Q., KWAK, J.H., Cubic symmetric graphs of order a small number times a prime or a prime square, Journal Combin. Theory, Ser. B, 97, pp. 627-646, 2007.
13. FOLKMAN, J., Regular line-symmetric graphs, J. Combin. Theory, 3, pp. 215-232, 1967.
14. GORENSTEIN, D., Finite simple Groups, Plenum Press, New York, 1982.
15. GROSS, J.L., TUCKER, T.W., Generating all graph covering by permutation voltages assignment, Discrete Math., 18, pp. 273-283, 1977.
16. LORIMER, P., Vertex-transitive graphs: Symmetric graphs of prime valency, J. Graph Theory, 8, pp. 55-68, 1984.
17. LU, Z., WANG, C.Q., XU, M.Y., On semisymmetric cubic graphs of order $6 p^{2}$, Science in China Ser. A Mathematics, 47, pp. 11-17, 2004.
18. MALNIC \bar{C}, A., Group actions, covering and lifts of automorphisms, Discrete Math., 182, pp. 203-218, 1998.
19. MALNI \bar{C}, A., MARUSI \bar{C}, D., WANG, C.Q., Cubic edge-transitive graphs of order $2 p^{3}$, Discrete Math., 274, pp. 187-198, 2004.
20. OH, J.M., A classification of cubic s-regular graphs of order $14 p$, Discrete Math., 309, 9, pp. 2721-2726, 2009.
21. OH, J.M., A classification of cubic s-regular graphs of order $16 p$, Discrete Math., 309, 10, pp. 3150-3155, 2009.
22. SKOVERIERA, M., A construction to the theory of voltage groups, Discrete Math., 61, pp. 281-292, 1986.
23. TUTTE, W.T., A family of cubical graphs, Proc. Cambridge Phios. Soc., 43, pp. 459-574, 1947.
24. WANG, C.Q., Semisymmetric cubic graphs of order $2 p^{2} q, \operatorname{Com}^{2}$ MaC Preprint Series, 2002.
