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This paper studies the topological and non-topological 1-soliton solutions to the Bretherton equation. 
The solitary wave ansatz method, also known as the trial solution method, is used to carry out the 
integration of the this equation. The 1-soliton solution as well as the shock wave solution is retrieved 
using this method. The constraint relation between the parameters and coefficients are also obtained 
for the existence of these kinds of nonlinear waves.  
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1. INTRODUCTION 

Bretherton equation (BE) is one of the recently studied nonlinear evolution equations (NLEEs) [9]. 
These NLEEs appear in various fields of applied and nonlinear sciences [1–10]. These include Physics, 
Biosciences as well as Engineering. There are various types of solutions that are revealed for these NLEEs. 
These include the cnoidal waves, snoidal waves, shock waves, solitary waves, singular solitary waves, 
periodic waves as well as double periodic waves. Moreover, there are various techniques of integrating these 
NLEEs are also available nowdays.  

In this paper, the focus will be on obtaining the exact topological as well as non-topological 1-soliton 
solutions for the following generalized Bretherton equation:  

2 = 0,m n
tt xx xxxxu k u au bu cu− + + +  (1)

where k , a , b  and c  are constants.  
To achieve this goal we will use the solitary wave ansatz method which has recently been applied 

successfully to several nonlinear partial differential equations. Here, we will calculate the closed form 
solutions for any arbitrary values of the exponents n  and m  with >n m  and 1n ≠ . It needs to be noted that 
the traveling wave solutions of this NLEE with a positive coefficient of the second order dispersion have 
recently been constructed by Kudryashov et al [9], for the particular cases = 1m  with any n , 1m ≠  and 

= 5n  and = 2m , = 3n . Additionally, Esfahani studied this equation in 2011 [1]. However, in that paper the 
special case with =1m , = 2n  was considered. This paper considers any arbitrary  values of m  and n . 

2. NON-TOPOLOGICAL SOLITON SOLUTION 

In order to solve (1), the starting hypothesis is given by  

( , ) =
cosh p

Au x t
τ

, (2)
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where  

= ( )B x vtτ −  (3)

and 

> 0p  (4)

for solitons to exist. Here, in (2) and (3), A  is the amplitude of the soliton while v  is the velocity of the 
soliton and B  is the inverse width. The exponent p is unknown at this point and its value will fall out in the 
process of deriving the solution of this equation. From the ansatz (2), one can find that 
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Inserting the expressions (5)-(9) into (1) yields 

 

( ){ }
( ) ( ) ( ){ }{ }

( ) ( ) ( )

2 2 2 2 4 4

22 2 2 4 2
2

4

4

1
cosh

1( 1) 1 2
cosh

1 2 3
= 0.

cosh cosh cosh

p

p

m n

p mp np

p AB v k aAp B

p p AB v k aAB p p p p

aAB p p p p bA cA

+

+

− + −
τ

− + − + + + + +
τ

+ + +
+ + +

τ τ τ

 (10)

From (10), equating the exponents np  and 4p +  gives  

= 4,np p +  (11)

so that  

4= .
1

p
n −

 (12)

Again from (10), equating the exponents mp  and 2p +  gives  

= 2,mp p +  (13)

that yields  
2= .

1
p

m −
 (14)

Now, by equating the two values of p  from (12) and (14), gives  

2 = 1.m n +  (15)
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We notice that from (4), (12) and (14) the following restrictions are obtained  

> 1, > 1,m n  (16)

with the condition > .n m  
Now from (10), setting the coefficients of the linearly independent functions 1 /cosh p j+ τ  to zero, 

where = 0, 2j , 4  gives 

( )
( ) ( ) ( ){ }

2 2 2 2 4 4

22 2 2 4 2

= 0,

( 1) 1 2 = 0,m

p AB v k aAp B

p p AB v k aAB p p p p bA

− +

+ − + + + + −
 (17)

( ) ( ) ( )4 1 2 3 = 0.naAB p p p p cA+ + + +  (19)

Solving the above system gives 

( )
1

3 1
= ,

2

n mb m
A

mc

− − − 
  

 (20)
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 (21)

and 
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( ) ( )
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2
2
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−
− − − − − 

+   
 (22)

Thus, the 1-soliton solution of the generalized Bretherton equation (1) is given by  

2
1

( , ) = ,
[ ( )]cosh m

Au x t
B x vt− −

 (23)

where the amplitude A  of the soliton is given by (20), the width B  is given by (21) while the the velocity v  
is shown in (22). In view of (22), we clearly see that this solution exists provided that < 0ab  and >k a . 
Also (20) shows that it is necessary to have < 0bc  for the non-topological soliton to exist if n m−  is an 
even integer. However, if n m−  is an odd integer there is no such restriction but the soliton will be pointing 
downwards. Finally, we would like to note that the solution (23) exists under the condition (15) with 

> > 1.n m  

3. TOPOLOGICAL SOLITON 

In this section we will calculate the topological 1-soliton solution of the generalized Bretherton 
equation (1), for any general values of the exponents n   and m   with mn > , using the solitary wave ansatz. 
To start off, the hypothesis is given by 

( , ) = ,tanh pu x t A τ  (24)

where  

= ( )B x vtτ −  (25)
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and 

> 0p  (26)

for solitons to exist. Here, in (24) and (25), A  and B  are free parameters and v  is the velocity of the wave. 
Also, the unknown exponent p  will be determined during the course of the derivation of the soliton solution 
to (1). Therefore from (24),we have  

{ }2 2 2 2= ( 1) 2 ( 1) ,tanh tanh tanhp p p
ttu pAB v p p p− +− τ− τ + + τ  (27)

{ }2 2 2= ( 1) 2 ( 1) ,tanh tanh tanhp p p
xxu pAB p p p− +− τ− τ + + τ  (28)
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= ,tanh pmm mu A τ  (30)

= .tanh pnn nu A τ  (31)

Substituting these expressions (27–31) into (1), we obtain 
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From (32), equating the exponents np  and 4p +  gives  

= 4,np p +  (33)

so that  

4= .
1

p
n −

 (34)

Again from (32), equating the exponents mp  and 2p +  gives  

= 2,mp p +  (35)

that yields  

2= .
1

p
m −

 (36)

It should be remarked that the topological 1-soliton solution (24) can be obtained when > 0p . Hence 
the conditions > 1n , > 1m  arises from (34) and (36). 

Now from (32) the linearly independent functions are tanh p j+ τ  for = 0, 2, 4j ± ± . Hence setting their 
respective coefficients to zero yields a set of algebraic equations: 
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( ) { }{ }2 2 2 4 2 2( 1) 2 ( 2) 1 = 0,pAB v k p apAB p p p− − − + − −  (37)

( ) { }2 2 2 2 4 3 2 22 4 ( 1) ( 2) ( 1) ( 2) = 0,p AB v k apAB p p p p p− − + + − − + + +  (38)

( ) { }{ }2 2 2 4 2 2( 1) 2 ( 2) 1 = 0,mpAB v k p apAB p p p bA− + − + + + +  (39)

( )4 ( 1)( 2) 3 = 0,napAB p p p cA+ + + +  (40)

( )4 ( 1)( 2) 3 = 0.apAB p p p− − −  (41)

To solve (41), we have considered the case 1 = 0p − . This yields = 1p  and therefore = 5n  and = 3m  
following to (34) and (36), respectively. Further substitution of this value of =1p  into (37–40), 
respectively, gives 

1

= ,
n mbA

c
− − 

 
 (42)
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2 3
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 (43)

and 

1

2 2= 2 .
3
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a c
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Since = 5n  and = 3,m   then the expressions (42–44) will be reduced to 

= ,bA
c

−  (45)

1
2 41 2= ,

2 3
bB
ac

 
− 
 

 (46)

and 

2
2 2= 2 .

3
bv k a
ac

+ −  (47)

Notice that the cases 2 = 0p −  and 3 = 0p −  are not considered here as it does not give a unique value of 
v , B  and .A  Thus, for the generalized Bretherton equation (1) topological solitons will exist only when 

= 5n  and = 3m . This important observation is being made for the first time in this paper. 
Hence, finally, the topological 1-soliton solution to the generalized Bretherton equation (1) is given by  

( , ) = tanh[ ( )],u x t A B x vt−  (48)

where the free parameters A  and B  are given by (45) and (46), and the velocity of the soliton is shown in 
(47). Note that following to (45–47 ) , we shall have the conditions < 0bc  and < 0ac  for toplogical  
1-soliton solution to exist.  
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