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Let G be a locally compact group and 2 p< < ∞ . We have recently considered the property that 

convolutions of functions in the pL -space of G exist, and have shown that this is equivalent to 
compactness of G . Here, we study this property on the weighted pL -space of G ; as the main result, 
we prove that G  is σ -compact if convolutions of functions in the weighted pL -space of G  exist.  
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1. INTRODUCTION 

Throughout the paper, let G  be a locally compact group with a fixed left Haar measure λ, and let ω be 
a weight function on G ; that is, a measurable real valued function on G such that ω ( ) 0>x  and 
ω ( ) ≤xy ω ( )x  ω ( )y  for all Gyx ∈, . For ∞<≤ p1 , let pL ﴾ G ,ω﴿ denote the Banach space of all functions 
f on G such that f ω pL∈ ﴾ G ﴿, the usual Lebesgue space as defined in [8]; we denote this space by 

pA ﴾ G ,ω﴿ when G  is discrete. For measurable functions f and g  onG , the convolution 

 ( ) ( ) ( )1 d
G

f g f y g y x y−∗ = λ∫  

is defined at each point Gx∈  for which this makes sense; i.e., the function ( ) ( )xygyfy 1−6  is  
λ-integrable. Then gf ∗  is said to exist as a function if ( )xgf ∗  exists for almost all Gx∈ . Convolution 
has applications in various fields such as statistics, computer vision, numerical analysis, numerical linear 
algebra, signal processing, electrical engineering, and differential equations. The convolution gf ∗  does not 
necessarily exist for all measurable functions f and g . So, it would be interesting to know when does 

gf ∗ exist for all functions f and g in a space X of measurable functions on G . If this is the case, then it is 
desirable to study the closeness of X under the convolution. Several authors have been studied the existence 
of convolution on certain function spaces; see for example the authors [1]. It is well-known that 1L ﴾G ﴿ is 
always closed under the convolution. Saeki [20] proved that, for ∞<< p1 , the space pL ﴾G ﴿ is closed 
under the convolution if and only if G  is compact; see also Crombez [4–5], Johnson [9], Kunze [11], 
Lohoue [12], Milnes [13], Rajagopalan [14–17], Rickert [18–19], Urbanik [21], Zelazko [22–24], for some 
special cases, and Kinani, Benazzouz [7] and the authors [2] and [3] for the more general case of weighted 

pL -space; see also Kitada and Yang [10]. But the convolution of elements in even does not exist in general. 
In fact, we have proved in [1] that, for ∞<< p2 , the convolution gf ∗ exists for all pLgf ∈, ﴾G ﴿ if and 
only if G  is compact. In this paper, we investigate this property for the weighted space pL ﴾G , ω﴿ and give 
some necessary or sufficient conditions for that the property holds.  
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2. CONVOLUTION ON pL  ﴾ G ,Ω﴿ 

A weight function ω on G  is called symmetric if ω=ω, where ω ( )x =ω ( )1x− ,  for all x G∈ ; note that 

the weight function ω =∗  ωω is symmetric. Our first result shows that if there is a weight function ω such 
that gf ∗  exists for all , pf g L∈ ﴾ G , ω﴿, then there is a symmetric weight function on G with the same 
property.  

LEMMA 2.1. Let G  be a locally compact group, ω be a weight function on G , and 1 p< < ∞ . If 

f g∗  exists for all , pf g L∈ ﴾ G , ω﴿, then f g∗  exists for all , pf g L∈ ﴾ G , ω ∗ ﴿. 

Proof. Let , pf g L∈ ﴾ G , ω ∗ ﴿ be positive. Then f ω, g ω̃ pL∈ ﴾ G , ω﴿ and f ω g∗ ω̃ ( )f g≥ ∗ ω̃, almost 
everywhere. It follows that f g∗ exists.  

Our next result is indeed the main result of the paper.  

THEOREM 2.2. Let G  be a locally compact group, ω be a symmetric weight function on G  and 
2 p< < ∞ . If f g∗ exists for all , pf g L∈ ﴾ G , ω﴿, then ω ( )1 F−  is contained in a compact subset of G  for 
all compact subset F of [ )1,∞ . 

 Proof. We only need to prove that ω [ ]( )1 1, m−  is contained in a compact subset of G  for all natural 

numbers 2m ≥ . To that end, suppose toward a contradiction that there is 0 2m ≥  such that ω [ ]( )1
01, m−  is 

not contained in any compact subset of G . Fix a compact symmetric neighborhood U of the identity element 
e  of G , and find an element 1s  of ω 1− [ ]( )01, m  with 1 0s s∉ U 4 , where 0s e= . Since ω is symmetric, we 

can assume ∆ ( )1 1s ≤ , where ∆ is the modular function of G . We therefore may find a sequence ( ) 1k ks
≥

 in 

ω 1− [ ]( )01, m  such that ∆ ( ) 1ks ≤  and  

 1ks s∉ U 4
1ks −∪ ∪… U 4                         ( )2k ≥ . 

For each x G∈ , set 

 ( ) 1/ 2

1f x
k

= ∆ ( )1/1 p
x− ω ( ) 1x − , 

if ∈x U 1−
ks  for some 1≥k  and ( ) 0=xf  otherwise. It is not hard to see that the sets U 1

1
−s , U 1

2
−s ,…  are 

pairwise disjoint, hence this formula defines a function f  on G . We show that pLf ∈ ﴾ G , ω﴿. To see this, 
we note that  

( )∫
G

pxf || ω ( )px d λ ( )x =∑
∞

=1
2/

1
k

pk
( ) ( )∫ −∆

G
kU xsx χ1  d λ(x)=∑

∞

=1
2/

1
k

pk
∆ ( )1−

ks ( ) ( )∫ −∆
G

Uk xxs χ1 d λ(x) 

                                               =∑
∞

=1
2/

1
k

pk
( )∫ −∆

U

x 1 d λ(x). 

Since U is compact and ∆ is continuous, it follows that pLf ∈ ﴾ G , ω﴿. A similar argument implies that if for 
each Gx∈  we set  
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 ( ) 2/1
1

k
xg = ω ( ) 1−x , 

when ksx∈ U 2  for some 1≥k  and ( ) 0=xg  otherwise, then pLg∈ ﴾ G ,ω﴿. Furthermore, U is compact 

and so by [6, Proposition 1.16], there is a constant M 0>  such that ω ( )x ≤M for all ∈x U. We thus conclude 
that for every ∈x U, 

( )( ) ( ) ( )∫ −=∗
G

xygyfxgf 1 dλ(y) =∑
∞

=1

1
k k

( )∫
−

−∆
1

/11

kUs

py ω ( ) 1−y ω ( ) 11 −− xy dλ(y)≥ 

                                          ≥ω ( ) 1−x ∑
∞

=1

1
k k

( )∫
−

−∆
1

/11

kUs

py ω ( ) 2−y dλ(y) ≥
Mm0

1
 ω ( ) 1−x ∑

∞

=1

1
k k

( )∫
−

−∆
1

/11

kUs

py dλ(y). 

Consequently  

( )∫
−

−∆
1

/11

kUs

py dλ(y) = ∆ ( )1−
ks

 
( )∫ −∆

U

p
k ys /11 dλ(y) = ∆ ( )1−

ks ∫ −∆∆
U

pp
k ys /11/1 )()( dλ(y)= 

                                               = ∆ ( ) p

ks
/111 −−  ( )∫ −∆

U

py /11  dλ(y) ( )∫ −∆≥
U

py /11 dλ(y), 

where the last inequality follows from ∆ ( ) 1≤ks and 011 >−
p

and hence ∆ ( ) 1
/111 ≥

−− p

ks for all .1≥k  

These all imply that for every ∈x U,  

( )( ) 2
1

M
xgf ≥∗ ω ( ) 1−x ∑

∞

=1

1
k k

( )∫
−

−∆
1

/11

kUs

py dλ(y) 2
1

M
≥ ω ( ) 1−x ∑

∞

=1

1
k k

( )∫ −∆
U

py /11 dλ(y). 

Now, since the interior of U is nonempty, we get  

( )∫ −∆
U

py /11 dλ(y) 0> , 

and thus ( )( ) ∞=∗ xgf for all ∈x U; that is, gf ∗ does not exist, a contradiction.   
 As two consequences of Theorem 2.2, we have the following corollaries. 

 COROLLARY 2.3. Let G  be a locally compact group, ω be a symmetric continuous weight function 
on G  and ∞<< p2 . If gf ∗  exists for all pLgf ∈, ﴾ G , ω﴿, then ω [ ]( )m,11−  is compact, for all ∈m N. 

 Proof. Since [ ]m,1  is a compact subset of [ )∞,1 , then the result follows by Theorem 2.2.  

 COROLLARY 2.4. Let G  be a locally compact group, ω be a weight function on G  such that ω ∗  is 
bounded from above, and ∞<< p2 . Then gf ∗  exists for all ( )ω,, GLgf p∈  if and only if G  is 
compact.  

 Proof. Lemma 2.1 implies that gf ∗  exists for all pLgf ∈, ﴾G, ω ∗ ﴿. Since ω ∗  is bounded, it follows 
that pL ﴾ G , ω ∗ ﴿ pL= ﴾ G ﴿. Now the result is concluded by [1, Theorem 1.1].  
 As the main consequence of Lemma 2.1 and Theorem 2.2, we have the following result.  

 THEOREM 2.5. Let G  be a locally compact group, ω be a weight function on G  and ∞<< p2 . If 
gf ∗  exists for all pLgf ∈, ﴾G, ω﴿, then G  is σ -compact. 
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 Proof. By Lemma 2.1, gf ∗  exists for all pLgf ∈, ﴾G , ω ∗ ﴿. Because ω ∗  is a symmetric weight 
function on G , then for each ∈m N, (ω ∗ ) [ ]( )m,11− , is a compact subset of G  by Corollary 2.3. Since  

G = ∪
∞

=1m

(ω ∗ ) 1− [ ]( )m,1 , then the result is obtained.  

 Remark 2.6. (a) Let us recall that Theorem 2.5 does not remain true for ∞<< p1 . In fact, if G  is an 
arbitrary discrete group, ω is a weight function on G and 21 ≤< p , then gf ∗  exists for all 

pgf A∈, ﴾ G ,ω﴿. 

 (b) The converse of Theorem 2.5 is not valid even for discrete groups. For example, consider the 
additive group Z and define the weight function  

ω ( ) ( ) 4/1||1 nn +=                  (n∈Z). 

Consider the space pA (Z, ω) for ∞<< p4  and the function ∈f pA (Z, ω) on Z defined by 

( ) ( ) 2/1||1 −+= nnf  for all ∈n Z, and note that ( )( )0ff ∗  does not exist. 
 (c) Let G be a locally compact group and ∞<< p2 . We have recently shown that gf ∗ exists for all 

pLgf ∈, ﴾ G ﴿ if and only if G  is compact. However, this result is not true for the weighted case in general; 
indeed, if ω is the weight function on the discrete group Z defined by  

ω ( ) ( ) qnn /2||1+=          (n∈Z), 

then gf ∗ exists for all pgf A∈, (Z,ω), where 
1−

=
p

pq is the exponential conjugate of p . This means 

that σ -compactness in Theorem 2.5 can not be replaced by compactness. 

 PROPOSITION 2.7. Let G  be a locally compact group and ω be a weight function G  with 

ω qL∈−1 ( G ), where 
1−

=
p

pq . Then gf ∗  exists for all pLgf ∈, ﴾ G , ω ﴿.  

 Proof. It follows from the Holder inequality that pL ﴾ G , ω﴿⊆  1L ( G ) if ω qL∈−1 ( G ). So, the result 
follows from the fact that gf ∗ exists for all 1, Lgf ∈ ( G ).  

 Remark 2.8. (a) Let G  be a locally compact group and ω be a weight function on G . Clearly, the 
topology of G  plays an important role in the study of convolution on pL ﴾ G , ω﴿. For example, gf ∗  exists 

for all pLgf ∈, (R,ωα), where  α
q
1

>  and ω ( ) ( )αα 1+= nx  for [ ] [ ]1,,1 +−−∪−∈ nnnnx  and 1≥n ; 

indeed, ω ∈−1
α

qL (R) whereas gf ∗  does not exist for some pgf A∈, ﴾R,ωα).  

 (b) The converse of Proposition 2.7 is not valid. For example consider the weighted space 4A (Z,ω), 
where ω is a weight function on Z defined by ω ( ) ( ) 2/1||1 nn += for all n∈Z. Then gf ∗ exists for all 

4, A∈gf ﴾Z,ω) whereas ω 3/41 A∉− (Z). 
 In the following result, for 6Gg : C we set g  ( ) ( )1−= xgx for all Gx∈ . 

 PROPOSITION 2.9. Let G  be a discrete group, ω be a weight function on G  and ∞<< p2 . Then 
gf ∗  exists for all ∈gf , pA ﴾ G , ω﴿ if and only if pA ﴾ G , ω﴿ pA ﴾ G , ω﴿ 2A⊆ ﴾ G ﴿. 
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 Proof. We only need to note that 

( )( ) ( )∑
∈

=∗
Gy

gxyfxgf  ( )y , 

for all ∈gf , pA ﴾ G ,ω﴿ and Gx∈ . 

 COROLLARY 2.10. Let G  be a discrete group, ∞<< p2  and ω be a symmetric weight function on 

G . Then gf ∗  exists for all ∈gf , pA ﴾ G , ω﴿ if and only if pA ﴾ G , ω﴿ 2A⊆ ﴾ G ﴿ 

 Our observations in Theorem 2.5 and Remark 2.6 lead us to the following questions. 

 Question 1.  Let G  be a locally compact group, ω be a weight function on G  and 21 ≤< p . Does 
gf ∗ exists for all pLgf ∈, ﴾ G , ω﴿? 

 Question 2. Let ∞<< p2 . For which σ -compact groups and weight functions ω on G , gf ∗ exists 
for all pLgf ∈, ﴾ G , ω﴿? 

It was also pointed out to us by the referee that a Lie group (in fact, any smooth manifold) is σ -compact if 
and only if has countably many connected components. So in particular Theorem 2.5 says nothing in the case 
when G is a connected Lie group, for instance additive group R n . Therefore the following question arises 
naturally. 

 Question 3. Let ∞<< p1 . For which connected Lie groups and weight functions ω on G , gf ∗ exists 
for all pLgf ∈, ﴾ G , ω﴿? 
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