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The site materials, soils or rocks, are nonlinear materials with a dynamic behavior strongly dependent 
of loading level and this behavior affects the whole dynamic response including the natural site period 
evaluation. Using a nonlinear Kelvin-Voigt model, this paper proposes a modeling method for the 
loading dependence of the site natural period, dependence with an important impact on site-structure 
resonance avoidance. 
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1. INTRODUCTION 

It is very well known that the major damages arise at resonance, when the natural period of structure is 
equal or very close to the dominant period of the site. For this reason, a correct evaluation of the natural 
period of the local soil deposit is an essential parameter to estimate local site effects on ground motions. 

The site materials, soils or rocks, are nonlinear materials with a dynamic behavior strongly dependent 
of loading level [2, 4, 14, 17]. Assuming that the geological site materials are nonlinear viscoelastic, in the 
previous author's papers [2–7] this nonlinear behavior was modeled with the aid of the nonlinear Kelvin-
Voigt model (NKV model). This model describes the nonlinearity by the dependence on the material 
mechanical parameters: shear modulus G and damping ratio ζ in terms of shear strain invariant γ: ( )G G= γ , 

( )ζ = ζ γ . This nonlinear behavior is met, more or less, at all site materials – more pronounced at soft 
materials (soils) and more reduced at rocks materials as we can see in experimental tests results from  
Figs. 1.1 and 1.2. 

 

    
Fig. 1.1 – Modulus-functions (examples). Fig.1.2 – Damping functions (examples). 
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Accordingly, all of the dynamic characteristics of the site oscillating system acquire strain dependence, 
including the rigidity ( ) ( )k A Gγ = ⋅ γ  and natural period ( ) ( )/gT B kγ = γ  where A and B are the 
proportional factors.  

From this reason, every site oscillating system is a nonlinear system and for every site emplacement 
instead of a unique natural period value gT  multiple values in terms of strain level exists, therefore for every 

site a function ( )g gT T= γ must to be evaluated [7–10].  
 

    
Fig. 1.3 – Seismic recorded and prediced data  

from INCERC station. 
Fig. 1.4 – Specimen loading range in the resonant column device 

(example). 

The seismic data recording during Vrancea earthquakes with different magnitudes shows a doubtless 
dependence of the natural periods and maximum accelerations on earthquake magnitude [13, 17–19] as we 
can see in the examples from Fig. 1.3, where the data recorded at INCERC seismic station is presented and 
where the estimation of the maximum predicted event ( PGA 0.305 g=  and 1.65 sgT = ) [18] was added. 

The usual method for site natural period determination is based on the "quarter length formula" 
4 /g sT H v= , where H is the site depth and sv is the shear wave velocity. This formula treats the site as semi-

infinite elastic space in contradiction with mechanical reality and gives a unique natural period value in 
contradiction with earthquake recording. 

The present paper proposes an evaluation method of the natural period nonlinear dependence with the 
aid of the resonant column tests data. The resonant column device can charge the soil specimen to a loading 
range equivalent (Fig. 1.4) to low until strong earthquakes [4, 22] and can give the nonlinear material 
functions ( )G G= γ and ( )ζ = ζ γ as we can see in the examples from Figs. 1.1 and 1.2. Using the 
magnification functions of the nonlinear Kelvin-Voigt model by numerical simulation with different loading 
level, we can enable modeling the nonlinear dependence of the site natural period. 

2. EVALUATION OF THE NATURAL PERIOD BY RESONANT COLUMN TESTS 

In principle, from resonant column test under a harmonic torsional input level 0 sini iM M t= ω  are 

obtained the corresponding strain level iγ , the modulus-function value iG  and damping value iζ  [4, 22]. 

The shear-modulus value iG  is obtained using the relationship: 
2

2 0
s

hG v ω = ρ = ρ Ψ 
,  (2.1)
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where ρ is the mass density of specimen, sv is the shear wave velocity, 0ω  is the specimen natural (angular) 

frequency, h is the specimen height and Ψ  is: 2 3= / 3 4 / 45R R RΨ − + , where  / topR J J=  is the ratio 
between torsional inertia of the specimen J and the torsional inertia of the top cap system topJ . 

 The specimen natural period for a level iγ  becomes: 

0

22 1h
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π ρπ

= = ⋅
ω Ψ

.  (2.2)

 After several tests with different strain levels ( )1, 2...i i nγ =  we can obtain the shear-modulus function 

( )G G= γ  in the normalized form: 
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  (2.3)

where 0G  is the initial value and ( )nG γ  is the normalized form of the shear-modulus function and the 
damping function ( )ζ = ζ γ in the normalized form: 

( ) ( ) ( )
( ) ( )
0 0

0
0

= ,   with : 
/

n
n

γ=
 ζ = ζ γζ ζ γ = ζ ⋅ ζ γ 
ζ γ = ζ γ ζ

  (2.4)

where 0ζ  is the initial value and ( )nξ γ is the normalized form of the shear damping function [4].  
 Also, the nonlinear natural period function of the soil specimen in becomes: 

( ) ( )
( )

( ) ( )
( )

0 0
0

0

0

with

2 1

  : 
1 .

g

g n
g

n

n

h
T T

G
T T T

T
T

T G

γ=

 π ρ
= γ = ⋅

Ψγ = ⋅ γ 
γ γ = = γ

  (2.5)

We mention that the natural periods obtained by resonant column test in the form (2.5) are the natural 
periods of the single degree of freedom oscillating system composed by a single mass (the vibration device) 
supported by a spring and a damper represented by the specimen.  But, as we can see from eq. (2.5) the 
physical and geometrical sample properties (h, ρ, J, Jtop) are included only in the initial value 0T . Thus, the 
resonant column test can offer accurate data for obtaining only the nonlinear dependence of the normalized 
natural period nT  [8, 9].  

3. NONLINEAR NATURAL PERIOD IN TERMS OF LOADINGS 

For practical applications it is necessary to determine the normalized natural period in terms of loading 
amplitude usually described by peak ground acceleration (PGA).  

For this conversion – ( )n nT T= γ  into ( )n nT T PGA=  – we can use the numerical simulation of the 
resonant column specimen behavior, modeled as nonlinear Kelvin-Voigt model subjected to abutment 
motion ( ) 0 sing gx t x t= ω  with different acceleration amplitudes 0

gx  (Fig. 3.1). In this loading case, the motion 
equation reads as [3, 4, 21]: 

( ) ( ) gx c x x k x x x+ ⋅ + ⋅ = − , (3.1)
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with the material functions ( )c x  and ( )k x  derived from nonlinear viscoelastic constitutive equation [4, 16]: 

( ) ( ) ( ) ( ) ( )
( )

0 2
2      ;      

1
p p

re

I I G x
c x J x k x G x

h h x
= ω ζ = =

+ ζ
, (3.2)

where J is the specimen inertia moment, 0ω  is the specimen natural frequency and h is the specimen height. 
 Using the change of variable t0ω=τ  and introducing the 

new time function ( )0( ) ( ) /x t xϕ τ = = τ ω  we can obtain for eq. 
(3.1) another form: 

( ) ( ) sinC K′′ ′ϕ + ϕ ⋅ϕ + ϕ ⋅ϕ = µ υτ , (3.2)

where the superscript accent denotes the time derivative with 
respect to τ, and: 
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The steady-state solution of the equation (3.2) can be written in the form: 

( ) ( ), , , sin( )ϕ τ υ µ = µΦ υ µ υτ −ψ , (3.4)

where ( ),Φ υ µ  is the nonlinear magnification function:  

( )
( )max , ,

, dynamic

static

x
x

τ
 ϕ τ υ µ Φ υ µ = =
µ

 (3.5)

a ratio of maximum dynamic amplitude max dynamicxϕ ≡  to static displacement staticxµ = .  

By numerical simulation we can obtain some nonlinear magnification functions ( ) ( ) ct.; µ=Φ υ = Φ υ µ  

one for each normalized loading amplitude 0 2
0/gxµ = ω  (see the example from Fig. 3.2 [4, 11, 12, 15, 20]). 

Then, because 0 0/ / 1/ nT T Tυ = ω ω = =  we can obtain the magnification functions Φ  in terms of 
normalized period Tn (Fig. 3.3) and then a relationship ( )n nT T= µ  (Fig. 3.4). Because 0 2

0/gxµ = ω =  

= ( ) 2
0PGA /g ⋅ ω  from ( )n nT T= µ  a relationship ( )PGAn nT T= we can be obtained (Fig. 3.5). As an 

example, in fig. 3.6 some functions ( )PGAn nT T=  for different site materials are given. 
For the evaluation of the entire site normalized natural periods first we must determine from resonant 

column tests the nonlinear variation i
nT  for each site strata, and then we can obtain the average natural period 

variation for the entire site layers av
nT  as the average of the normalized natural period strata i

nT  weighted 
with the thickness ih  of each layer [10, 18, 19]: 

PGA=ct.

i
n iav
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T h
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= ∑
∑

.  (3.6)

Fig. 3.1. NKV model with abutment excitation. 
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Fig. 3.2 – Nonlinear magnification functions in terms  
of normalized frequency (for a clay specimen). 

Fig. 3.3 – Nonlinear magnification functions in terms  
of normalized periods (for a clay specimen). 

  

Fig. 3.4 – Relationship ( )n nT T= µ . Fig. 3.5 – Relationship ( )n nT T PGA= . 

  
Fig.3.6 – Some functions ( )PGA

n n
T T= . Fig. 3.7 – Dependence Tg – PGA provided by both resonant 

column data and seismic records. 

This method was validated using the site of the seismic station INCERC with known stratification [1]. 
First, for each constituent layer the material functions ( )G G= γ and ( )ζ = ζ γ  was estimated and thus, by 
numerical simulation, a function ( )PGAi i

n nT T=  for each strata i was obtained. Then, for some PGA values 
(0.05, 0.10, 0.15, 0.20, 0.25 and 0.30 g) using eq. (3.6) the site natural period averages av

nT  was obtained. 
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The results of the resonant column simulations in the form ( ) ( )0PGA PGAav
g nT T T= ⋅  with initial value 

0 0.25 sT = from seismic data are given in Fig. 3.7 together with seismic data recording at the same site. As e 
can see from this figure the differences between seismic records and resonant column simulations are 
acceptable.  

4. PRACTICAL CONSEQUENCES OF THE SITE NATURAL PERIOD NONLINEARITY 

4.1. A possibility to anticipate the strong earthquake periods starting from small and moderate events 

For aforementioned validation, the geological and seismic data of the INCERC site was used because 
for this site there are multiple seismic recordings with different magnitudes beginning with low events until 
the strong March 4, 1977 earthquake.  

However, for a large majority of the usual sites only seismic recording of the low and moderate events 
are available. In these cases, the evaluation of the dominant period for strong earthquakes using only seismic 
low and moderate data presumes an extrapolation procedure with inherent large errors [11, 20].  

The resonant column device can charge the soil specimen to a loading range equivalent to low until 
strong earthquakes (Fig. 1.4) and the nonlinear natural period dependence ( )PGAn nT T= can be obtained by 
means of interpolation statistical process with an upper accuracy [4, 22]. 

In this case, when only low and moderate seismic data are available, the determination in the resonant 
column by the interpolation of the nonlinear variations in normalized form: ( )PGAn nT T=  together with the 
determination of the normalization value 0T  from seismic recording can leads to a better approximation of 
the natural periods for large PGA values. As an example, in Fig. 4.1 from available records at INCERC 
station only low and moderate seismic records were selected as “observed data domain”. With this data the 
extrapolation leads to inadmissible values for natural period values at large PGA values. But, using the 
resonant column interpolation together with initial natural period 0T  obtained from observed data domain the 
predicted gT values are much closer from measurement (and predicted) values. Thus, during March 4, 1977 
event the measurement value was 1.56 sgT =  [18, 19] and from resonant column interpolation + initial low 
seismic value was obtained 1.48 sgT = . 

4.2. Structural-site resonance avoidance 

The dynamic response of a certain structure is strongly dependent of the ratio between the natural 
period of the structure and the dominant period of this emplacement. It is very well known that the major 
damages arise at resonance, when the natural period of structure is equal or very close to the dominant period 
of the site. For this reason, a correct evaluation of site dominant period has a special importance. 

For linear oscillator the resonance between the excitation period and the natural period of the oscillator 
lead to a continuous magnification of the displacements until failure, irrespective of loading magnitude. But, 
in the case of nonlinear oscillators with degradable materials the resonance leads to the mechanical material 
degradation and thereby the rigidity decreasing, natural period growing and the oscillator gets out from 
resonant stage.  

The site resonance due to the coincidence between earthquake period and site period it is not a 
continuous deformation process but rather a shock type loading. From this reason, the seismic loading level 
(magnitude, PGA) plays an important role in the resonance consequences because only strong events 
(over 7GRM = ) may lead to an important structural damages which can grow until structural collapse. This 
assumption was validated by post-earthquake observations [18].  

Thus, we can define for every site a dangerous zone corresponding to earthquakes with strong 
magnitudes. As an example, for seismic site INCERC the seismic recordings show that for magnitudes 
between 7GRM =  and maximum expected 7.5GRM =  an acceleration range PGA 0.1 0.3 g→ and a 
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natural period range 1.2 1.65 sgT →  correspond (Fig. 4.1). (We mention that from RC data a natural 
period range obtained was 1.2 1.57 sgT → ). As we can Figs. 4.1. and 4.2, these ranges delimit an 
avoidable domain for this site. 

Treating the site as linear oscillator means a unique natural period assignment. But, even if this value is 
overestimated the resonance can not be avoided. In the structural strength design an overvaluation of the 
external loadings assure a sure structural response under inferior loadings. But, in the resonance case, the 
overestimations of the natural site period (as provided the wave velocity method, or else) do not assure the 
resonant avoidance. Thus, for example, if for INCERC site it is considered only the unique site natural 
period as provided by wave velocity method ( 1.56 sgT =  and PGA 0.30 g= ) there seems that the resonant 
danger arises only for buildings with the same natural period. Thus, for a building with a natural period 

1.30 ssT = , for example, the resonant is unlikely. But, if we take into account the loading dependence of the 
site natural period (Fig. 4.2) the natural period of 1.30 ssT =  can be reach under inferior loading as 
PGA 0.13 g=  and resonant magnification can arises. 

 

  
Fig. 4.1 – Predicted large natural periods of the strong 

earthquakes (example – site INCERC). 
Fig. 4.2 – Natural periods for 7.0 7.5GRM = →  

(example – site INCERC). 

5. CONCLUDING REMARKS 

• The site geological materials have a degradable rigidity in terms of the strain level, and the increase 
excitation level leads to the rigidity decrease and the increase of the natural period values.  

• The seismic data recording during Vrancea earthquakes with different magnitudes shows a doubtless 
dependence of the site natural periods and maximum accelerations on earthquake magnitude. 

• The usual method for site natural period determination is based on the semi-infinite elastic space 
hypothesis and gives a unique natural period value in contradiction with earthquake recording. 

• Whereas the linear oscillating systems have a unique resonance value, the nonlinear oscillating 
systems have multiple resonant values in terms of excitation amplitudes. The nonlinear resonance peaks 
occurs at different normalized frequency υ situated before the excitation frequency (frequency dispersion) 
and under linear resonant value. 

• Because any structural-site system is a nonlinear oscillating system there are no unique “natural 
periods” of a certain building, irrespective of his emplacement. Thus, the natural period of the structural-site 
system is a function of excitation level. 

• The resonant column device can charge the soil specimen to a loading range equivalent to low until 
strong earthquakes. 

• Using the resonant column data we can evaluate the nonlinear dependence of the site degradable 
materials and we can quantify the material nonlinear functions for moduli, rigidity and natural period. 
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• The dependence of the dominant site period on the excitation level – ( )PGAg gT T=  – can be 
obtained from recorded seismic data if these data cover the entire expected PGA value range. 

• The dependence of the natural period on the excitation level in normalized form – ( )PGAn nT T=  – 
can be modeled by interpolation of the resonant column data. This method described in this paper has been 
validated by comparison with recording earthquake data. 

• When only low and moderate seismic data are available, the resonant column determination of the 
nonlinear variations in normalized form: ( )PGAn nT T=  together with the determination of the normalization 
value ( )0 PGA 0PGAgT T ==  from seismic recordings can leads to a better approximation of the dominant 
periods for large PGA values. 

• Treating the site as linear oscillator with a unique natural period (even overestimated) the resonance 
can not be avoided. 
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