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The ROC (Receiver Operating Characteristics) curves are frequently used to measure the 
effectiveness of diagnostic biomarkers. A global measure of the ROC curve is the Youden index, the 
maximum difference between sensitivity and 1-specificity. The cut-point is the value for which the 
maximum is attained. In this paper we obtain the asymptotic distribution of the optimal cut-point 
under the assumption that both the healthy and diseased populations are gamma distributed with a 
common shape parameter and when the gamma parameters are estimated by the method of moments. 
Based on the asymptotic distribution we construct confidence intervals for the cut-point. We also 
consider a nonparametric estimator of the Youden index and a measure of its precision based on the 
kernel estimator of a distribution function. We construct confidence intervals based on this 
methodology which we compare with those based on the delta method. 

Key words: ROC curve, Youden index, Optimal cut-point, Method of moments. 

1. INTRODUCTION 

The ROC curve is frequently used in assessing the effectiveness of continuous diagnostic markers 
between diseased and healthy individuals. Without loss of generality we will suppose a person is assessed as 
diseased or healthy if the corresponding marker value is larger than or less than or equal to a given threshold 
value. Associated with each marker value is the sensitivity (the probability that a diseased person be detected 
as such by the test) and the specificity (the probability that a healthy person be detected as such by the test). 
The ROC curve is defined as the plot of sensitivity versus 1-specificity. 

ROC curves are estimated on the basis of two samples of marker values taken in the populations of 
diseased ( 1X ) and healthy subjects ( 0X ). Both parametric and nonparametric methods have been used for 
estimating the ROC curves (Pepe, 2003; Krzanowski and Hand, 2009).  

The most commonly used measure of accuracy of the ROC curve is the area under the curve (AUC) 
which was showed to equal 1 0( )AUC P X X= > . The probability 1 0( )P X X>  appears also in situations not 
dealing with the evaluation of biomarkers like stress-strength problems. When one tests the quality of an 
item or a product 1X  is the strength that varies from item to item and 0X  represents the random value of a 
stress that the item will be subjected to. 1 0( )P X X>  will be the probability that a randomly selected item 
functions successfully. The inference on 1 0( )P X X>  in the reliability of stress-strength systems was 
considered under various assumptions (Reiser and Gutmann, 1986; Constantine and Karson, 1986; McCool, 
1991; Surles and Padgett, 1998). 

Another frequently used summary index of marker accuracy is the Youden index defined as the largest 
difference between the sensitivity and 1-specificity taken over all points on the ROC curve or equivalently 
over all possible threshold values. We will use the notation ( ) Se( ) (1 Sp( ))J c c c= − − , where Se(c) and Sp(c) 
are the sensitivity and the specificity corresponding to threshold c. The Youden index is the maximum of 

( )J c  taken over all possible values of c. The Youden index has an attractive feature not present in AUC. It 
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provides a criterion for choosing the optimal threshold value which is the value optc  for which the maximum 
is attained ( YI ( )optJ c= ). Based on optc  one will be able to establish weather a person is healthy (if its 
marker value is less than optc ) or diseased (if its marker value is larger than optc ). 

Fluss, Faraggi and Reiser (2005) deal with the estimation of Youden index and its associated cutoff 
point. They present four different methods (parametric and nonparametric) for estimating YI and optc , then 

they compare these methods through an extensive simulation study. The first method supposes that both 0X  
and 1X  have independent normal distributions with different means and variances. The second method 
suppose that there exists some monotonic transformation ( )t ⋅  such that 0( )t X  and 1( )t X  are normally 
distributed. The last two methods are nonparametric and consist of estimating the cumulative distribution 
functions of 0X  and 1X . The first uses the empirical estimate of cdf of 0X  and 1X  while the second 
nonparametric method uses a kernel method for cdf estimate of 0X  and 1X . In the nonparametric case 
numerical methods are needed to find both ˆoptc  and the Youden index associated with ˆoptc . The simulations 

they undertake cover a wide variety of different distributional shapes for 0X  and 1X : symmetric, skewed 
and bimodal situations often seen in real data. 

Another work dealing with the Youden index is Schisterman and Perkins (2007). They propose the 
delta method for estimating the variance of ˆoptc  and ˆ( )optJ c  in two cases: first they assume that 0X  and 1X  

are independent normal variables with different means and variances. Then they assume that 0X  and 1X  are 
independently distributed following gamma distributions with different shape and scale parameters. In the 
general gamma case with different shape and scale parameters ˆoptc  and ˆ( )optJ c  cannot be determined 
explicitly, numerical methods being necessary in order to compute them. They undertake a simulation study 
where confidence intervals for ˆoptc  and ˆ( )optJ c  based on the delta method are compared in terms of coverage 
probability and length to confidence intervals based on three bootstrapping methods. 

In the general gamma case where the shape and scale parameters are different there are no closed 
expressions for ˆoptc  and ˆ( )optJ c  therefore they have to be determined numerically. The delta method 

proposed by Schisterman and Perkins (2007) for estimating the variance of ˆoptc  and ˆ( )optJ c  adds to the 
amount of computation by the fact that one has to deal with the derivatives of c and J with respect to the 
parameters of gamma distributions which themselves have to be found numerically. 

In this paper we consider the much more tractable case where 0X  and 1X  are independently gamma 
with common shape but different scale parameters. Instead of estimating the gamma parameters by the 
maximum likelihood estimator (ML) we chose the method of moments (MM). In section 2 we obtain the 
asymptotic distribution of ˆoptc  in a different way then by applying the delta method. Thus we show how a 

considerable simplified formula for ˆ( )optV c  can be obtained. We undertake a simulation study following the 
general lines of Schisterman and Perkins (2007). We examine how the properties of the confidence intervals 
for the optimal cut-point based on its asymptotic distribution are influenced by different sample sizes and 
parametric situations. Section 3 deals with the Youden index for which we consider a non parametric 
estimator as well as a nonparametric estimator of its precision. We then compare confidence intervals of the 
Youden index based on the non parametric estimator with confidence intervals based on the delta method 
proposed by Schisterman and Perkins (2007). 

2. INFERENCE FOR THE OPTIMAL CUT POINT 

The special case of 0X  and 1X  being independently gamma distributed with common shape and 
different scale parameters is briefly considered in (Schisterman et. al., 2005). Faraggi and Reiser (2002) also 
consider it in the wide variety of distributions they use in their simulation study aimed at comparing several 
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methods of estimation of the area under the ROC curve. Thus for the population of controls and cases we 
assume two independent gamma distributions: 

0 0~ Gamma( ,β )X α  and 1 1~ Gamma( , )X α β , 

where 0 1β β<  (otherwise one may simply switch the cases with controls in the following analysis). 
Gamma(α,β)  is the gamma distribution with density: 

α 1

α,β α

exp( / β)( )
β (α)

x xf x
− −

=
Γ

. 

Let 0F ( 1F ) and 0f ( 1f ) be the cdf and respectively the density functions of 0X ( 1X ). Let 
010 0{ ,..., }nx x  

and 
111 1{ ,..., }nx x  be the samples of controls and cases with means 0x  and 1x  and variances 2

0s  and 2
1s  

respectively. ( )J c  will be given by: 

0 1( ) ( ) ( )J c F c F c= − . 

A consequence of assuming common shapes is the existence of an explicit formula for optc . It can be 
shown (Schisterman et. al., 2005) that the optimal cut point maximizing ( )J c  is given by: 

1 0

0 1

α(log(β ) log(β ))
1 1( )

β β

optc
−

=
−

 

and the associated Youden index by YI ( )optJ c= . 

Parameters 0 1α,β  and β  have to be estimated. Instead of using the ML estimators we will propose 

methods of moments estimators 0 1
ˆ ˆα̂,β  and β . Even if the method of moments estimators have not the 

optimality properties of the ML estimators they don’t need numeric methods to be computed as in this case is 
needed for the ML estimators.  

2 2 2
0 0 0 0( ) α β σE s = =  and 2 2 2

1 1 1 1( ) α β σE s = = . 

On the other hand: 

0 0 1 1 0 0 1 1

0 1 0 1
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n n n n

+ +
= =

+ +
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where x  is the mean of the sample of cases and controls put together. From these one can derive method of 
moments estimators by equaling 2 2

0 1,  and s s x  to their respective means. Solving the equations one obtains: 

2 2
0 1
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We will plug 0 1
ˆ ˆα̂,β  and β  into the formula of optc  to get an estimator of the optimal cut point and of the 

Youden index: 

1 0

0 1

ˆ ˆα̂(log(β ) log(β ))ˆ
1 1( )ˆ ˆβ β

optc
−

=
−

 and ˆYI ( )optJ c= . 

We proved the following theoretical result for the asymptotic distribution of ˆoptc  (proofs are available 
from the authors): 
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Result 1: With the notations and under the conditions introduced so far the asymptotic distribution of 
ˆoptc  is given by: 

2
0 1 ˆ( ) (0, σ )opt opt dn n c c N+ − →  

with 2σ  given by: 

0 1
2 2 0 1

0 1 0 10 1
0 1 0 1

0 1
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Simulation study. In a simulation study we assessed the coverage percentage and the length of 
confidence intervals for optc  based on the asymptotic distribution derived in A1. For 

0 1( , ) (50,50),(100,100)n n =  and (200,200)  we generated gamma samples for controls and cases with 

01, 0.5,1 and 2α β= =  and 1β  taken such that the Youden index be equal to 0.2, 0.4, 0.6, 0.8 and 0.9. The 
left part of Table 1 contains for each parameter combination the values of 1β  and optc . 

Table 1  

ˆ( )optRB c / ˆ ˆ( ( ))optRB V c  and Coverage probability/Average length of CI for optc  

    ˆ( )optRB c / ˆ ˆ( ( ))optRB V c  Cov. Prob./Av. length of CI for optc  

 YI 
1β  optc  0 1 50n n= =  0 1 100n n= =  0 1 200n n= =  0 1 50n n= =  0 1 100n n= =  0 1 200n n= =  

01, 0.5α β= =  0.2 0.86 0.65 -1.18/-0.43 -0.58/0.54 -0.35/0.71 93.4/0.266 94.2/0.190 94.7/0.135 

 0.4 1.57 0.84 -0.84/3.55 -0.40/3.10 -0.24/1.80 94.3/0.396 94.8/0.284 94.8/0.202 

 0.6 3.22 1.10 -0.50/8.03 -0.27/6.71 -0.15/2.75 95.0/0.614 95.0/0.440 95.0/0.313 

 0.8 9.20 1.54 0.16/6.90 0.13/4.14 0.08/4.19 95.3/1.013 95.3/0.723 95.5/0.514 

 0.9 23.45 1.96 0.60/7.19 0.16/4.91 0.02/3.38 95.2/1.411 95.2/1.006 95.2/0.713 

01, 1α β= =  0.2 1.73 1.30 -1.04/0.67 -0.55/0.51 -0.20/2.15 93.4/0.533 94.3/0.380 94.9/0.270 

 0.4 3.14 1.68 -0.85/3.84 -0.36/2.62 -0.18/2.23 94.4/0.792 94.5/0.568 95.1/0.404 

 0.6 6.44 2.20 -0.63/6.53 -0.23/3.46 -0.03/4.67 94.6/1.228 95.0/0.880 95.2/0.627 

 0.8 18.41 3.08 0.02/7.48 0.06/7.06 0.15/4.29 95.2/2.025 95.3/1.446 95.3/1.029 

 0.9 46.91 3.93 0.46/9.97 0.25/2.88 0.11/1.87 95.4/2.821 95.1/2.012 95.0/1.428 

01, 2α β= =  0.2 3.46 2.60 -0.98/0.69 -0.60/-0.43 -0.23/1.72 93.7/1.065 94.1/0.760 94.8/0.540 

 0.4 6.29 3.36 -0.76/2.70 -0.41/2.99 -0.20/2.09 94.4/1.586 95.1/1.136 95.0/0.809 

 0.6 12.88 4.41 -0.53/5.33 -0.23/5.38 -0.15/2.78 94.9/2.457 95.2/1.762 95.1/1.254 

 0.8 36.82 6.16 -0.15/7.71 -0.01/3.85 0.14/3.86 95.0/4.041 95.0/2.892 95.3/2.058 

 0.9 93.82 7.86 0.35/9.09 0.24/6.02 0.10/2.59 95.2/5.639 95.3/4.021 95.0/2.859 
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For each combination of parameters we generated 10000 gamma samples for cases and controls. Based 
on these samples we simulated the Monte Carlo values of ˆ( )optE c , ˆ( )optV c  and ˆ ˆ( ( ))optE V c  where 

2
0 1

ˆ ˆ ˆ( ) /( )optV c n nσ= +  and 2σ̂  is 2σ  with 0 1, ,α β β  replaced by their respective MM estimators. Then we 

computed the relative bias of ˆoptc  and ˆ ˆ( )optV c . The values of ˆ( )optRB c  and ˆ ˆ( ( ))optRB V c  are in the middle 

part of Table 1. Values for ˆ( )optRB c  confirm that ˆoptc  is unbiased for optc  while values for ˆ ˆ( ( ))optRB V c  

prove that ˆ ˆ( )optV c  derived from Result 1 is asymptotically unbiased for ˆ( )optV c  as its bias decreases as 

0 1 and n n  increase. 
For each sample we computed a 95% confidence interval for optc  based on the formula 

ˆˆ ˆ1.96 ( )opt optc V c± . The 10000 confidence intervals were used to compute the coverage percentage and the 

average length which are reported in the right part of Table 1. The coverage probabilities are close to the 
nominal value for larger values of 0 1 and n n . There is a tendency for them to increase and approach the 
nominal value when YI takes larger values. A large value of YI is indicative of a biomarker with a good 
power to discriminate between healthy and diseased patients thus these are the situations which are 
interesting from a practical point of view. The value of 0β  doesn’t seem to have an important impact on the 
coverage probabilities.  

There is a clear tendency for the average length to increase when both YI and 0β  increase which is 
what one expects as optc  also increases as can be seen from the left part of Table 1. On the other hand the 

length decreases as 0 1( , )n n  increase. However if one compares the average length of the optc  confidence 

interval to the value of optc  by the ratio between these values it can be noticed that the ratios still increase as 

functions of YI and 0β  and they decrease as functions of 0 1( , )n n . 

3. INFERENCE FOR THE YOUDEN INDEX 

The Youden index is given by 0 1YI ( ) ( )opt optF c F c= − . If we replace optc  by ˆoptc  then we obtain the 

parametric estimator of YI denoted by YI  and equal to 0 1ˆ ˆYI ( ) ( )opt optF c F c= − . Schisterman and Perkins 

(2007) estimated the variance of YI  using the delta method. In this section we estimate the cdfs 0F  and 1F  
by kernel estimators as in (Lloyd, 1998) who used such nonparametric estimators to estimate a ROC curve 
and the area under it.  

Denoting by Φ  the cdf of a standard normal distribution, 0̂F  and 1̂F  will be given by: 

0
0

0
10 0

1ˆ ( ) ( )
n

i

i

x xF x
n h=

−
= Φ∑   and  

1
1

1
11 1

1ˆ ( ) ( )
n

i

i

x xF x
n h=

−
= Φ∑ . 

Below we will need nonparametric estimators for the first and the second derivative of 0F  and 1F . 

These can be obtained by deriving two times 0̂ ( )F x  and 1̂( )F x  with respect to x: 

0
' 0

0
10 0 0

1ˆ ( ) ( )
n

i

i

x x
F x

n h h=

−
= ϕ∑   and  

0
'' 0

0 2
1 00 0

1ˆ ( ) '( )
n

i

i

x x
F x

hn h =

−
= ϕ∑ , 

where ( ) '( )x xϕ = Φ  and similar expressions for '
1̂ ( )F x  and ''

1̂ ( )F x  hold. 

Then the nonparametric estimator of the Youden index will be 0 1
ˆ ˆˆ ˆYI ( ) ( )

NP

opt optF c F c= − . 0h  and 1h  are 

the bandwidths used for estimating 0F  and 1F  which control for the level of smoothing. In estimating a cdf 
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the optimal choice for h is of order 1/ 3n− . Therefore we will take 1/ 3
0 0h n−=  and 1/ 3

1 1h n−= . We proved Result 

2 below which gives expressions for the bias and the variance of YI
NP

 up to terms of order (1/ )O n  and 
2(1/ )O n  respectively (proofs are available from the authors): 

Result 2: With the notations and under the conditions introduced above the bias and variance of YI
NP

 
are given by: 

'' 2 '' 2
0 0 1 1

1 1(YI ) ( ( ) ( ) ) ( )
2

NP

opt optBias F c h F c h O
n

= − + , 

2 ' 2 ''
0 0 0 1 0 0 0 0

0

1 1(YI ) [ ( ) ( ) 2 α ( ) ( )(1 2 ( )]
2

NP

opt opt opt opt optV F c F c h F c h F c F c
n

= − − + − +  

2 ' 2 ''
1 1 1 1 1 1 1 1 2

1

1 1 1[ ( ) ( ) 2 α ( ) ( )(1 2 ( )] ( ).
2opt opt opt opt optF c F c h F c h F c F c O

n n
+ − − + − +  

An estimator ˆ(YI )
NP

V  of (YI )
NP

V  will then be obtained by replacing in the formula above optc  by 
ˆoptc  and the cdfs and their derivatives by their respective nonparametric estimators. Confidence intervals for 

the Youden index can then be computed by ˆYI 1.96 (YI )
NP NP

V± . We also followed Schisterman and 
Perkins (2007) to estimate the YI and its variance. Thus we estimated the Youden index by 

0 1ˆ ˆYI ( ) ( )opt optF c F c= −  where 0F  and 1F  are estimators of 0F  and 1F  obtained by replacing the gamma 

parameters by their method of moments estimators. Then we obtained an estimator of (YI)V  based on the 

delta method which we denoted by ˆ(YI)DMV . In the following subsection through a simulation study we 
compared the behavior of both approaches. 

Simulation study. In a similar manner as in the preceding simulation study for different parameters 
values we generated 10000 samples of cases an controls aimed at estimating the relative bias of both the 
Youden index estimator and its variance estimator. We first used the delta method and then the 
nonparametric approach in order to compare them. The left part of Table 2 contains the relative biases of YI  

and YI
NP

 as the right part of Table 2 contains the relative biases of ˆ(YI)DMV  and ˆ(YI )
NP

V .The bias of YI  

is small for most values of 0 1( , )n n . On the other hand the bias of YI
NP

 can be as large as –9.54% for 

0 1( , ) (50,50)n n =  and YI=0.2 but is asymptotical unbiased with a negligible bias as 0 1( , )n n  increase. The 

value of YI affects both the biases of YI  and YI
NP

. Larger values of YI means smaller relative biases with 
negligible biases even for 0 1( , ) (50,50)n n = . It is important to notice this fact given that in practice one will 

deal with biomarker having YI larger that 0.6. For 0β 0.5=  the relative bias of YI  is smaller than that of 

YI
NP

. For 0β 1=  or 0β 2=  and if YI 0.6>  the relative bias of YI
NP

 is smaller than the relative bias of YI  
showing that in these cases the nonparametric approach is superiror to the delta method.The right part of 
Table 2 shows that the relative bias of ˆ(YI)DMV  as an estimator of (YI)V  can be large especially for small 

values of 0 1( , )n n  and large value of YI. ˆ (YI )
NP

V  performs better with relative biases less than 5% in 

absolute value. However both ˆ(YI)DMV  and ˆ(YI )
NP

V  are asymptotically unbiased but almost everywhere 

ˆ(YI )
NP

V  is superior to ˆ(YI)DMV  in terms of bias. In the left part of Table 3 there are the coverage 

probabilities and the average length of the confidence interval for YI using YI
NP

 and ˆ(YI )
NP

V . Larger 
values of YI seem to diminish the coverage probability to values as small as 88.2% if 0 1( , ) (50,50)n n =  and 
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YI=0.9. However the coverage probability increases as 0 1( , )n n  increase. 0β  also influences the coverage 
probability by diminishing it as 0β  increases. 

Table 2 

Values of (YI)RB / (YI )
NP

RB and ˆ( (YI) )DMRB V / ˆ( (YI ))
NP

RB V (%) 

  (YI)RB / (YI )
NP

RB  ˆ( (YI) )DMRB V / ˆ( (YI ))
NP

RB V  
 YI 0 1 50n n= =  0 1 100n n= =  0 1 200n n= =  0 1 50n n= =  0 1 100n n= =  0 1 200n n= =  

01, 0.5α β= =  0.2 1.70/-9.54 0.74/-6.44 0.12/-3.77 6.34/2.40 1.79/3.02 0.47/4.54 

 0.4 1.47/-5.58 0.51/-3.23 0.42/-1.95 5.40/4.96 4.02/0.51 4.92/2.60 

 0.6 1.43/-2.81 0.72/-1.59 0.34/-1.06 7.38/0.54 3.88/2.15 2.02/2.31 

 0.8 1.03/-1.06 0.49/-0.60 0.26/-0.43 14.67/0.002 8.04/1.57 4.20/0.45 

 0.9 0.46/-0.24 0.22/-0.20 0.04/-0.16 19.01/1.21 10.25/-0.28 7.99/0.55 

01, 1α β= =  0.2 1.31/-2.56 0.74/-0.91 -0.13/-0.96 4.28/-0.64 3.18/-1.09 1.16/-0.68 

 0.4 1.27/-1.65 0.77/-0.95 0.27/-0.50 4.09/-0.64 2.33/2.05 3.78/0.77 

 0.6 1.62/-0.87 1.01/-0.35 0.43/-0.40 4.98/-0.89 5.07/2.77 0.96/-0.99 

 0.8 1.01/-0.25 0.61/-0.11 0.20/-0.07 13.54/-4.42 7.87/-1.98 4.54/-0.96 

 0.9 0.40/0.08 0.25/0.04 0.15/-0.02 20.56/-3.40 10.54/-0.57 4.76/2.18 

01, 2α β= =  0.2 1.80/-0.41 0.92/-0.81 0.04/-0.57 8.11/-2.04 3.07/-1.26 3.60/-0.04 

 0.4 1.20/-0.90 0.85/-0.39 0.49/-0.11 3.24/-0.05 2.37/-1.30 0.56/0.60 

 0.6 1.46/-0.12 0.68/-0.26 0.37/0.02 5.40/-0.32 2.41/1.38 0.50/-0.22 

 0.8 0.95/-0.06 0.49/-0.003 0.21/-0.12 15.52/-2.73 6.36/0.03 1.73/-2.85 

 0.9 0.52/0.16 0.22/0.04 0.15/0.002 22.97/-5.52 11.62/-0.18 5.09/-1.87 

Table 3 

Coverage probability/Average length of CI for YI 

  Non parametrical approach Delta Method approach 

 YI 
0 1 50n n= =  0 1 100n n= =  0 1 200n n= =  0 1 50n n= =  0 1 100n n= =  0 1 200n n= =  

01, 0.5α β= =  0.2 94.7/0.301 95.0/0.224 95.2/0.164 95.1/0.387 94.6/0.273 94.5/0.193 

 0.4 94.7/0.302 94.6/0.220 94.6/0.159 95.2/0.338 95.4/0.238 95.5/0.168 

 0.6 94.5/0.278 95.0/0.200 95.0/0.143 94.3/0.285 94.7/0.202 94.9/0.143 

 0.8 94.1/0.216 94.9/0.155 94.9/0.110 92.8/0.230 93.7/0.166 94.3/0.118 

 0.9 92.0/0.157 93.5/0.113 94.5/0.081 90.0/0.172 92.7/0.125 94.0/0.090 

01, 1α β= =  0.2 94.6/0.336 94.7/0.243 94.8/0.174 94.9/0.386 95.0/0.273 94.8/0.193 

 0.4 94.7/0.323 95.2/0.232 95.1/0.166 94.9/0.338 94.8/0.238 95.3/0.168 

 0.6 94.7/0.288 94.8/0.206 94.7/0.147 93.8/0.285 94.7/0.202 94.6/0.143 

 0.8 92.8/0.220 93.9/0.157 94.3/0.112 92.6/0.230 93.6/0.165 94.6/0.118 

 0.9 89.8/0.158 92.6/0.114 94.7/0.082 90.1/0.173 92.4/0.125 93.5/0.089 

01, 2α β= =  0.2 94.4/0.352 94.7/0.252 94.8/0.179 95.2/0.386 94.7/0.273 95.4/0.193 

 0.4 94.2/0.334 94.6/0.238 94.8/0.169 94.8/0.338 94.8/0.238 94.8/0.168 

 0.6 94.2/0.295 95.2/0.210 94.7/0.149 94.3/0.285 94.6/0.202 94.7/0.143 

 0.8 92.7/0.223 93.9/0.159 94.2/0.114 92.8/0.231 93.9/0.166 94.2/0.118 

 0.9 88.2/0.159 92.9/0.116 93.7/0.083 90.1/0.172 92.6/0.125 93.9/0.089 
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We also computed the coverage probabilities and their average length of CI using YI  and ˆ(YI)DMV . 
The right part of Table 3 contains the results. By comparing the left and right parts of Table 3 we can notice 
similar values for coverage percentage especially for 0 1( , ) (100,100)n n =  and 0 1( , ) (200,200)n n = , as for 

0 1( , ) (50,50)n n =  the delta method provided coverage probability a bit higher than the nonparametric 
approach. As for the average length the nonparametric approach outperforms the delta method by providing 
confidence intervals shorter than those using the delta method for all the parameters values considered by the 
simulation study. 
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