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The practice of mechanical characterization of composite materials demonstrates that there are at least 
two characteristics being very difficult to be determinate by experiments: in-plane shear modulus G12 
and F12 coefficient of Tsai-Wu for failure criterion. The purpose of the study was to explore and 
subsequently establish experimental techniques for determination of these two mechanical 
characteristics by exploiting a very interesting phenomenon observed in composites mechanical 
answer: decoupling effects. 
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1. INTRODUCTION 

 The group of composite materials that was under study here involves composites called “reinforced 
materials”. The basic components of these materials (sometimes referred to as “advanced composites”) are 
long and thin fibers possessing high strength and stiffness. The idea of combining several components to 
produce a new material with properties that gather in an intelligent way the interesting properties of 
individual components has been led to high performances materials. Correspondingly, the majority of natural 
materials that have emerged as a result of a prolonged evolution process can be treated as composite 
materials. 
 

 
Fig. 1 – The orthotropic model for composites. 

 A structural study at the level of individual components of a composite, micromechanical analysis 
provides only qualitative prediction of the ply stiffness as well as for the ply strength.  

For practical applications, the mechanical answer is modeled by considering the global answer of the 
material, the macromechanical model. The macromechanical model assumes that the reinforced composites 
can be considered as homogenous materials with an anisotropic mechanical answer.  

2. COUPLING EFFECTS PHENOMENON 

A simply analysis of the constitutive equation in the case of the plane problem for orthotropic materials 
demonstrates that the compliance matrix will be totally populated if it is written with respect to a coordinate 
system (Oxyz in Fig. 1) that is not coincident with the principal anisotropic directions (O123 in Fig. 1), as 
shown in equation (1)  
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If the first and the third equations from (1) are developed, two interesting observations can be made: for a 
complex stress state, shearing stress will produce normal strain, and  normal stress will produce shear strain. 
This phenomenon, characteristic for composite materials, is known as “weak coupling effects” and generally 
influences in a negative manner different mechanical tests.  
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Fig. 2 – Off-axis tensile test. Fig. 3 – Variation of Ex modulus. 

In the case of the tensile experiment shown in Fig. 2a, because of the rigid clamps of the testing 
machine, applied at both ends of the specimen, the shearing movement of the material in these zones is 
restricted. That will result in a deformation of the whole specimen as shown in Fig. 2b. 

This behavior of the specimen is critical from measurements point of view. In these situations, the local 
deformations of the specimen will significantly affect the measurements. The deformations of the specimen 
take place in the test gauges area too. In this case, the value of the fiber angle, θ1, is different of the θ value 
for the unloaded specimen (as shown in Fig. 2). It would be significant the study of the influence of θ angle 
upon the variation of conventional Young modulus, Ex. 

Analyzing the curve Ex = Ex(θ) in Fig. 3, there are some important observations to be done: 
• the maximum value for Ex  modulus is obtained when θ = 0o i.e., when Ex = E1 (along the fibers) ; 
• the minimum value for Ex modulus is obtained in a direction that is not always perpendicular to the 

fiber direction i.e. it is possible that Emin < E2 (and this is according to a enunciated Jones’ theorem [2]);  
• there is a domain where the values of Young modulus decrease very quickly (A-domain) and 

another one where these values are, practically stationary (B-domain). 
If the tensile experiment is done in A-domain, small modifications of θ value (because of the specimen 

distortion – for example), ∆θ, will be translated in significant changes for the Ex measured value, ∆Ex.  
Conclusion. It would be better if the off-axis experiment is performed for an angle, θmin, where the Ex 

curve is stationary (B-domain in Fig. 3). In this case, small modifications of θ angle will be translated in 
small modifications of Ex modulus. 

3. DECOUPLING EFFECTS 

 According to the previous chapter conclusion, because the evaluation of θmin angle represents the key 
of this study, a careful analysis of its significance has to be done. 

3.1. Determination of minθ  direction 

For a simple tensile test on Ox direction (σx ≠0, σy = τxy = 0), from (1) 11S  is to be considered to 
represent 1/Ex. In order to find out the value of θmin, it is necessary to look for the stationary points of the 
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function Ex = Ex(θ). These points characterize the stationary points of the function 1/Ex too, taking into 
account that the function Ex is differentiable and Ex > 0 i.e. a minimum of Ex corresponds to a maximum for 
1/Ex as resulting from equations  
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The solutions of the equation (3) within the domain [0, 90o] are 
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corresponding to E1, Emin and E2, respectively. 
Observation. All tissue reinforced laminas as well as some long fiber reinforced composites [1] satisfy 

the conditions 
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In these cases the solution (4) exists and the corresponding value of Emin, can be directly calculated:  
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3.2. Decoupling effects 

 A simple analysis of the equation (1') demonstrates that the avoiding of coupling effects phenomenon 
(decoupling effects) for a tensile loading test can be achieved if   

16 0 .S =  (7)

In this case, normal stress will cause only normal strains.  
In [3] was demonstrated that  

Simple calculus demonstrates that 

i.e. the equations (2) and (7) are equivalent. This means that the effects are not coupled if the force is applied 
in the following directions (with respect to fiber direction): in the fiber direction (natural elasticity direction, 
θ = 0o); in an in-plane orthogonal direction (natural elasticity direction, θ = 90o); in the direction 
corresponding to the minimum value of the Young’s modulus, (θ = θmin ). Or the directions where the Young 
modulus function is stationary (i.e., the directions where the function has points of local extreme), are 
coincident with those where the effect couplings phenomenon is absent, for a uniaxial load case.  
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These three directions can be exploited for experimental determination of different mechanical 
characteristics of the composite lamina, as a result of accurate stress state in the sample if the tensile or 
compression loading force was applied corresponding to each direction. Precisely, tensile and compression 
tests on O1 and O2 directions (Fig. 1) can be used in order to determine E1, E2, v12, and v21 engineering 
constants of constitutive equation of the composite, as well as F1, F2, F11, and F22 coefficients of Tsai Wu 
Failure Criterion. More complicated, as it will be shown later, are the experiments to determinate shearing 
modulus, G12, and F12 coefficient of Tsai Wu Failure Criterion. 

4. AN ITERATIVE WAY FOR SHEAR MODULUS DETERMINATION N 

4.1. Generalities 

 In plane shear modulus determination, G12, generated many studies that led to different techniques. 
Some of these techniques were accepted and imposed by testing regulations. Each method has its 
disadvantages that will influence the accuracy of the determinations as presented below: 

• The ± 45o tensile method consists in a tensile test upon a plane specimen manufactured by gluing 
two laminas oriented at ± 45o. According to the behavior of laminas on off axis tensile tests illustrated in fig. 
2, the two opposite laminas will block the displacement tendency each other maintaining the rectilinear 
shape of the specimen. The main disadvantage of the method consists in the additional shearing stress at the 
glued faces of the sample, and as a result, a complex stress state will occur inside the sample.    

• The specimen for the two rail shearing test is fixed between two metallic rails that are acted by two 
longitudinal forces producing the shearing of the material between the rails. The disadvantage of the method 
stems in the added compression forces towards the rails and bending effects that will disturb the uniaxial 
stress state. 

• The Iosipescu shearing test seems to be more accurate. The disadvantages of the method are: the 
complexity of the fixture devices, the complicate shape of the sample has to be performed by machining that 
will alter the real structure of composite.       

4.2. Shear modulus and decoupling angle determination 

 The existence of θmin direction legitimates a tensile test similar with the ± 45o one, but having the 
advantage that the effect coupling will be absent and this will assure a uniaxial stress state inside specimen. 
As a consequence, once known Ex, by using the relation 
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the shear modulus can be directly determined. 
The main problem that appears is generated by the two unknowns in the equation (14), namely G12 and 

θmin. The method that the authors propose to solve the previous problem stems in an iterative way of 
simultaneously determination the two unknowns.  

It is assumed that the mechanical characteristics E1, ν12, E2, ν21  have already been determined. 
The iterative way presented below, is bound to be convergent towards the stability point θmin on the Ex  

curve.  
For the first step an arbitrary angle θ(1) is selected and a specimen is cut in this direction (for example it 

can be chosen θ(1)  = 45o). 
A tensile experiment is made upon this specimen and an approximate Young’s modulus results: (1)

xE . 
Now it is possible to calculate an approximate value for shear modulus, (1)

12G  by using Equation (10), and, 
from equation (4) the angle θ(2) for the specimen that will be used in the following steps. 

Generally, for the step i the determinations are done in the same way. 
• the angle θ(i)  is determined in the previous step, and a specimen is cut in this direction; 
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• the Young’s modulus ( )i
xE  is determined in a tensile experiment made upon this specimen; 

• the shear modulus  is calculated by using the equation 
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• the angle ( )1i+θ for the following step is calculated in the same way 
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The process will be considered ready when the difference between two consecutive values of θ angle, is 
enough small 

( ) ( )1 .i i+θ − θ ≤ ω  (13)

The error ω is considered in connection with the precision of the specimen cutting operation. By the 
experience of the authors the results obtained for ω=1o are enough satisfactory. The method is very simple 
and can be applied in any standard laboratory of mechanics. The convergence of the method is very quick 
and the determinations can be as accurate as required.  

4.3. Experimental results 

The method was tested for several long fibers reinforced composite materials. A complete set of 
experiments in order to determine the engineering constants for a four layered laminate (0/0/0/0) is presented 
below.  

Four prepreged plies tape were laid up in a 0 degree direction and processed in the autoclave. The 
cured panel had a nominal thickness of 0.5 mm with the fiber volume fraction of 0.61. Individual specimens 
were cut dry from the panel with the fibers oriented in the necessary directions. Each test specimen having 
nominal dimensions of 0.5 × 20 × 250 mm was then ground on the long edges to a width tolerance of ± 0.1 
mm. Each specimen was instrumented with a 90o biaxial rosette strain gauge bonded to the centre of one face 
of the specimen. One component of the rosette was in alignment to the loading axis of the specimen. The 
engineering constants were determined: E1  = 120.0 GPa; E2  = 10.8  GPa;  ν12  = 0.3182; ν21  = 0.0288. 

In order to determine the shear modulus, the iterative chain of determinations started with 
determination of Young’s modulus for a specimen cut at a 45o angle with respect to the fibers.  

Finally, there were obtained: G12 = 3,810 MPa, θmin = 61.3o, Emin = 11,172 MPa, noting the errors 
1
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where: ωE – the error of Ex  measurement; o
1 st
45

E −  – the Young’s modulus determined in a simple tensile test 

upon a specimen cut at 45 degrees with respect to the fiber direction; o
fin
45

E  – the final (correct) value of 
Young modulus for the same direction determined by using the authors test method. And, similar for 
shearing modulus 

The results demonstrate that even with the relative length of the specimen enough great (25/2) the error 
for shear modulus determination is quite significant, if a simple tensile experiment is used. The presented 
arguments demonstrated that the method offers the possibility to determine this mechanical characteristic 
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with a precision as great as it is desired. The method is a very simple one. Its potential disadvantage is 
connected to the number of experiments necessary to be done in order to obtain accurate results. 

The experience of the authors in this problem demonstrated that, generally, the convergence of the 
method is quite fast. Fig. 4 shows the measurement convergence rate. 

 

  
Fig. 4 – Measurement rate convergence in the iterative way. Fig. 5 – Specimen model. 

4.4. Numerical Simulation  

The numerical simulation was done by using FEM code ANSYS 10 (Swanson Analysis Systems Inc.).  
Because of the unidirectional orientation of the fibers inside the specimen there were considered 

isoparametric finite elements: orthotropic plates, SHELL63, with both bending and membrane capabilities 
with four nodes and six degrees of freedom on each node. 

According with equations (1), (9), and the boundary conditions of the model, the shearing strain 
expression  
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will produce displacements of the whole specimen towards left or right, depending on the sign of the 
derivative (slope) in equation (9) ( ,0 min1

o θ<θ< the displacement of the specimen will take place towards 
left side and for ,90o

2min <θ<θ  towards right side).  Finally, for ,minθ=θ  no displacements will take 
place except the transversal contractions. In figure 6 the deformed shape for the three considered cases (45o, 
61.3o = θmin, and 80o) are presented.  The x-displacements of the top line nodes situated on a part and the 
other of this middle node are negative and, respective, positive because of the specimen transversal 
contraction, in the tensile loading (the Poisson’s phenomenon). 

All physical & numerical results verify the theoretical considerations and validate in good terms the 
experimental method proposed by the authors presented for determination in-plane shear modulus. 

 

 
Fig. 6 – Numerical simulation of the specimen answer in different tensile tests:  

a) min45oθ = < θ ;  b) min61.3oθ = = θ ;  c) min80oθ = > θ . 

a b c 
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5. TSAI WU FAILURE CRITERION F12 COEFFICIENT DETERMINATION  

5.1. Generalities 

 Tsai Wu failure criterion is more common in composite structure calculus. All professional codes for 
structure analysis (ANSYS, NASTRAN, ABAQUS, COSMOSM, etc.) have this criterion implemented in its 
simplest (but efficient) form for plane problem: 

2 2 2
1 1 2 2 11 1 12 1 2 22 2 66 62 1F F F F F Fσ + σ + σ + σ σ + σ + σ = . (16)

If the experimental characterization of F1, F2, F11, F22, F66 coefficients is quite simple (tensile, compression 
and shearing tests), the coefficient F12 generated many studies that led to different techniques because of the 
requirement to obtain a controlled complex stress state inside the sample. Each method has its disadvantages 
that will influence the accuracy of the determinations as presented below: 

• The biaxial tensile test [4] applied upon a “cross sample” can achieve a complex stress state, but the 
reciprocal influence at joining corners will generate an uncontrollable stress state. The experience 
demonstrates that the fracture starts from these points that will influence the accuracy of the failure 
estimation via F12.    

• The uniaxial tensile and compression test (Fig. 7) proposed by Evans & Zhang [5] represents an 
experiment quite difficult to be performed. The frictions near the wall are difficult to be estimated and this 
will influence the accuracy of determinations.  

• The 45o tensile loading test [3] induces major errors grace of the coupling effects phenomenon.       
The complex stress state (σ1 and σ2) achieved by using a cylindrical specimen loaded in tensile (or 

compression) and with interior pressure [6] seems to offer accurate results.  

 
 

Fig. 7 σ1 – σ2 complex stress state in a uniaxial compression test. Fig. 8 – Cylindrical specimens. 

The disadvantages of the method consist in the difficulty to perform such experiments and in the 
technical observation that because the technologies used in manufacturing the composite cylinder and the 
composite structure are different. That can lead to different materials with different characteristics (volume 
fracture, orientation of fibers etc.).  

As a natural conclusion results that the decoupling effects direction can be a simple and efficient way. 
This conclusion is highlighted by the observation that θmin direction was already determined together with the 
shearing modulus determination. 

5.2. Determination of F12 failure coefficient 

 Considering that the decoupling direction had already been determined, the sample was cut with the 
fibers at θmin orientation. The test will be continued until the fracture of the sample, noting with Q the value 
of the strength. Under the hypothesis that the composite behavior is linear until the fracture, a uniaxial stress 
state will be present inside the sample during the whole test and, more important, the shearing stress is 
absent.    

For the axis systems as presented in Fig. 1 the relation for the stress tensors can be written  
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where [T(θ)] was the rotating matrix. Under the mentioned hypothesis, for the ultimate loading the equation 
(17) becomes   
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. (17')

Noting c = cosθmin, and s = sinθmin, and introducing the stress components from (17') in equation (16), 
the final the expression of F12 is obtained 

( )2 2 4 2 4 2 2 2 2
12 1 2 11 22 662 2 2

1 1
2

F F c Q F s Q F c Q F s Q F s c Q
c s Q

= − − − − + . (18)

Noting the ultimate stress values obtained in simple tensile, compression, and shearing tests for samples with 
θ = 0o, and θ = 90o as follows: Xt - tensile strength on direction 1, Xc - compression strength on direction 1,  
Yt - tensile strength on direction 2, Yc - compression strength on direction 2, S – shearing strength in 1-2 
plane, the F1, F2, F11, F22, F66 Tsai Wu coefficients can be easy [2, 3, 4] determined as 

1 2 11 22 2

1 1 1 1 1 1 1, , , ,
t c t c t c t c

F F F F F
X X Y Y X X YY S

= − = − = = = . (20)

6. CONCLUSIONS 

• The decoupling effects direction can be considered an additional mechanical characteristic for plane 
reinforced composites. Despite the quite complicate determining method (iterative) the advantages offered 
by θmin direction can be considered compensatory in accuracy terms.  

• The G12 and F12 experimental determination by using θmin direction offers simple and precise 
methods using simple facilities present in any mechanical testing lab. 

• Both numerical and experimental results validate the method for G12 determination. Simple 
calculations in this case demonstrate that the results obtained by using off axis 45o tensile test can lead to 
errors. 

• The experimental validation of F12 coefficient is conditioned by the accepted degree of accuracy of 
Tsai Wu failure criterion itself. 

ACKNOWLEDGEMENTS  

This work was financially supported by UEFISCSU for contract nr. 643/2008, inside the CNCSIS 
project Mathematical Models for Complex Ultimate States in Composite Materials. In the same time, the 
authors would like to express their gratitude for the testing facilities offered by the School of Engineering at 
the University of Hertfordshire, UK.  

REFERENCES 
1. S. M. LEE, Handbook of Composite Reinforcements, Wiley-vch Verlag Gmbh, November 1992. 
2. R. M. JONES, Mechanics of Composite Materials, Edwards Brothers Ann, Arbor, M I Ed., 1998. 
3. I. FUIOREA, Mecanica materialelor compozite. Proiectarea răspunsului mecanic, Ed. Pan-publishing House, Bucureşti, 1996.  
4. N. CRISTESCU, Mecanica materialelor compozite, Edit. Universităţii Bucureşti, 1983. 
5. K. E. EVANS, W. C. ZHANG, The Determination of the Normal Interactive Term in the Tsai Wu Polinomial Strength Criterion, 

Composite Science and Technology, 30, 1987. 
6.  V., VASILIEV, E. V. MOROZOV, Mechanics and Analysis of Composite Materials, Elsevier, Oxford, 2001 

Received August 10, 2010 


