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Matrix relations for kinematics and inverse dynamics of the 3-RRR planar parallel robot are 
established in this paper. Three identical planar legs connecting to the moving platform are located in 
the same plane. Knowing the general motion of the platform, we develop first the inverse kinematics 
problem and determine the positions, velocities and accelerations of the robot’s elements. The inverse 
dynamics problem is solved using the principle of virtual work, but it has been verified the results in 
the framework of the Lagrange equations with multipliers. Recursive equations offer expressions and 
graphs for the input powers of three revolute actuators and the internal forces in the joints. 
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LIST OF SYMBOLS 

, 1k ka − – orthogonal transformation matrix 

, 1k k−ϕ – relative rotation angle of kT rigid body 

, 1k k−ω – relative angular velocity of kT  

, 1k k−ω – skew-symmetric matrix associated to the angular velocity 1, −kkω  

, 1k kr − – relative position vector of the centre kA of joint  

km , ˆ
kJ – mass and symmetric matrix of tensor of inertia of kT about the link-frame kkk zyx   

10 10 10, ,A B Cp p p – powers of three fixed revolute actuators 

1. INTRODUCTION 

Compared with serial manipulators, the followings are the potential advantages of parallel robots: 
higher kinematical precision, lighter weight and better stiffness, greater load bearing, stabile capacity and 
suitable position of arrangement of actuators [1]. Considerable efforts have been devoted to the kinematics 
and dynamic analysis of fully parallel manipulators. Among these, the class of manipulators known as 
Stewart-Gough platform focused great attention (Stewart [2]). They are used in flight simulators and more 
recently for Parallel Kinematics Machines. The prototype of Delta parallel robot (Clavel [3]; Tsai and 
Stamper [4]; Staicu [5]) as well as the Star parallel manipulator (Hervé and Sparacino [6]) are equipped with 
three motors which train on the mobile platform in a three-degrees-of-freedom general translation motion. 
Angeles [7], Wang and Gosselin [8] analysed the kinematics, dynamics and singularity loci of Agile Wrist 
spherical robot with three actuators. 

A mechanism is said to be a planar robot if all the moving links in the mechanism perform the planar 
motions. In a planar linkage, the axes of all revolute joints must be normal to the plane of motion, while the 
direction of translation of a prismatic joint must be parallel to the plane of motion. Aradyfio and Qiao [9] 



 Comparative analysis in dynamics of the 3-RRR planar parallel robot 2 348 

examined the inverse kinematics solution for the three different 3-DOF planar parallel robots. Pennock and 
Kassner [10] present a kinematical study of a planar parallel robot, where a moving platform is connected to 
a fixed base by three links, each leg consisting of two binary links and three parallel revolute joints. Merlet 
[11] solved the forward pose kinematics problem for a broad class of planar parallel manipulators and Yang 
et al. [12] concentrate on the singularity analysis of a class of 3-RRR planar parallel robots developed in its 
laboratory. 

A recursive method is introduced in the present paper, to reduce the number of equations and 
computation operations by using a set of matrices for kinematics and dynamics models of the planar 3-RRR 
parallel robot. 

2. KINEMATICS ANALYSIS  

Having a closed-loop structure, the planar parallel robot 3-RRR is a special symmetrical mechanism 
composed of three planar kinematical chains with identical topology, all connecting the fixed base to the 
moving platform (Fig. 1). In the actuation schema of the parallel robot ( )RRR  with all revolute actuators 
installed on the fixed base, we consider the moving platform as the output link and the elements 

1 2A A , 1 2B B , 1 2C C  as the input links. We attach a Cartesian frame 0 0 0 0( )x y z T  to the fixed base with its origin 
located at triangle centre O , the 0z  axis perpendicular to the base. Another mobile reference frame G G Gx y z  
is attached to the moving platform (Fig.2). 

 
 
 
 

 

                                                                 

 

 

 

 

 

 

 

Fig. 1 – The planar 3-RRR parallel robot. Fig. 2 – Kinematical scheme of first leg A of the mechanism. 

Considering that the moving platform is initially located at a central configuration, we note that the 
relative rotation of kT  body with , 1k k−ϕ angle must be always pointing about the direction of kz  axis. One of 
three active legs (for example leg A ) consists of a fixed revolute joint, a moving crank 1 of length 1l , 

mass 1m and tensor of inertia 1Ĵ , which has rotation about Az1  axis with the angle 10
Aϕ , the angular velocity 

10 10
A Aω = ϕ  and the angular acceleration 10 10

A Aε = ϕ . A new element of the leg is a rigid rod 2 linked at the 
AAA zyx 222 frame, having a relative rotation with the angle 21

Aϕ , velocity 21 21
A Aω = ϕ  and acceleration 21 21

A Aε = ϕ . 

It has the length 2l , mass 2m  and tensor of inertia 2Ĵ . Finally, a revolute joint is introduced at the moving 
platform, which is schematised as an equilateral triangle congruent to the base with the edge 3rl = , mass 

3m and tensor of inertia 3Ĵ  with respect to frame 3 3 3 3
A A AA x y z . At the central configuration, we also consider 
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that all legs are symmetrically extended and that the angles giving the initial pose of the mechanism have 
following values 

5, ,
6 6 2A B C
π π π

α = α = α = − . (2.1)

We call the matrix , 1k kaϕ
− , for example, the orthogonal transformation 3 3×  matrix of relative rotation 

with the angle , 1
A
k k−ϕ of link A

kT  around A
kz  axis. Using the rotation matrix , 1 , 1rot( , )i

k k k kp zϕ
− −= ϕ  and pursuing 

the independent legs one obtains the following transformation matrices  

10 10 21 21 2 1 32 32 2 1, , ( , , ; , , ),ip p p p p p p a b c i A B Cϕ ϕ ϕ
α= θ = θ θ = θ θ = = , (2.2)

where 1 2, ,i
αθ θ θ  are three appropriate constant matrices. In the inverse geometric problem, the position of 

the mechanism is completely given through the coordinates GG yx 00 , of the mass centre G  and the 

orientation angle φ  of the movable frame GGG zyx . The orthogonal rotation matrix of the moving platform 

from 000 zyx to GGG zyx  reference system is rot( , )R z= φ . 

Further, we suppose that the position vector of G  centre T
0 0 0[ 0]G G Gr x y=  and the orientation 

angleφ , which are expressed by following analytical functions can describe the general absolute motion of 
the moving platform in its vertical plane 

* * *
0 0 0 0(1 cos ), (1 cos ), (1 cos )

3 3 3
G G G Gx x t y y t tπ π π
= − = − φ = φ − . (2.3)

From the conditions T
30 30p p R= , 30 32 21 10 30 30, ( 0) ip p p p p p t α= = = = θ  (with , ,i A B C= ; ), , ,p a b c=  

concerning the orientation of the platform one, the first relations between angles of rotation are obtained      

10 21 32 10 21 32 10 21 32 .A A A B B B C C Cϕ −ϕ + ϕ = ϕ −ϕ + ϕ = ϕ −ϕ + ϕ = φ  (2.4)

Six variables 10 21,A Aϕ ϕ , 10 21,B Bϕ ϕ , 10 21,C Cϕ ϕ  will be determined from several vector-loop equations, as 
follows 

2 2 2
T T T T T T

10 0 1 30 3 10 0 1, 30 3 10 0 1 30 3 0
1 1 1

A A GA B B GB C C GC G
k k ,k k k k k k ,k

k k k
r a r a r r b r b r r c r c r r+ + +

= = =

+ + = + + = + + =∑ ∑ ∑ , (2.5)

where:  
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T T T
10 10 10 21 1 32 1 3 10.5 [ 3 1 0] , [0 1 0] , 0.5 [ 3 1 0] , , ,A B C i i Gir r r r r r r ru r ru r ru= − = = − − = = = − . 

(2.6)

In the inverse kinematics modelling we compute first the linear and angular velocities of each leg in 
terms of the angular velocity 0 3

G uω = φ  and the centre’s velocity 0 0
G Gv r= of the moving platform. The 

kinematics of the elements of the leg A are characterized by the velocities of the centres of joints kA and the 
absolute angular velocities: 

10 0Av = , 20 10 21 3 21
A A Av a u r= ϕ , 30 32 20 21 10 32 3 32( )A A A A Av a v a u r= + ϕ − ϕ . 

10 10 3
A A uω =ϕ , 20 21 10 21 21 10 3( )A A A A Aa uω = ω +ω = ϕ −ϕ , 30 32 20 32 10 21 32 3( )A A A A A Aa uω = ω +ω = ϕ −ϕ +ϕ . 

(2.7)

Equations of geometrical constraints (2.4) and (2.5) can be derivate with respect to time to obtain the 
following matrix conditions of connectivity [13]  



 Comparative analysis in dynamics of the 3-RRR planar parallel robot 4 350 

T T T T T T T T T T T
10 10 3 21 21 32 21 32 3 21 20 3 32 32 3 32 30 3 3 0ˆ{ } { } ( 1,2),A A A GA A A GA A GA G

j j j ju a u r a r a a r u a u r a r u a u r u r jω + + + ω + + ω = =

10 21 32
A A Aω −ω +ω = φ . 

(2.8)

From these equations, we obtain the relative velocities 10 21 32, ,A A Aω ω ω  as functions of basic 
velocities 0 0, ,G Gx y φ . 

Now, let us assume that the robot has successively virtual motions determined by three sets of angular 
velocities 10 1Av

aω = , 10 0Bv
aω = , 10 0Cv

aω = , 10 0Av
bω = , 10 1Bv

bω = , 10 0Cv
bω =  and 10 0Av

cω = , 10 0Bv
cω = , 10 1Cv

cω = . All 
characteristic virtual velocities are expressed as functions of the pose of the mechanism by the general 
kinematical equations (2.8). As for the accelerations 10 21 32, ,A A Aε ε ε  of the robot, new conditions of connectivity 
are obtained: 

T T T T T T T T
10 10 3 21 21 32 21 32 3 21 20 3 32 32 3{ } { }A A A GA A A GA

j ju a u r a r a a r u a u r a rε + + + ε + +  

T T T
32 30 3 3 0ˆA GA G

j ju a u r u r+ε = − T T
10 10 10 3
A A

ju a uω ω T T T
3 21 21 32 21 32 3{ }A A GAu r a r a a r+ + −  

T T
21 21 20 3
A A

ju a u−ω ω T
3 32 32 3{ }A GAu r a r+ − T T

32 32 30 3 3 3
A A GA

ju a u u rω ω −  

T T T
10 21 10 3 212 A A

ju a u a− ω ω T
3 32 32 3{ }A GAu r a r+ − T T T T

10 32 10 3 21 32 3 32 A A GA
ju a u a a u rω ω −  

T T T
21 32 20 3 32 3 32 A A GA

ju a u a u r− ω ω ,  10 21 32
A A Aε − ε + ε = φ     ( 1, 2)j = . 

(2.9)

The derivatives of the relations (2.7) give the accelerations 0
A
kγ  and 0

A
kε . 

3. DYNAMICS EQUATIONS 

Three different methods could lead to the same results concerning the input torques. The first one is the 
Newton-Euler approach, which consists to apply the free-body diagram procedure for each body [14]. The 
second method is based on the Lagrange formalism, which introduces scalar multipliers for each closure 
equation and the third method for the dynamics analysis is based on the principle of virtual work [15]. 

3.1. Principle of virtual work 

Knowing the kinematics state of each link as well as the external forces acting on the robot, one applies 
first the principle of virtual work for the inverse dynamic problem in order to establish some matrix relations. 
Three electric motors that generate the moments 10 10 3

A Am m u= , 10 10 3
B Bm m u= , 10 10 3

C Cm m u=  oriented about fixed 
axes, simultaneously control the motion of the moving platform. The parallel robot can artificially be 
transformed in a set of three open chains by introducing the corresponding constraint conditions. 

The wrench of two vectors *
0 39.81A A

k k kf m a u= , *
0 39.81A A CA

k k k km m r a u=  evaluates the action of the weight 
A
km g  and eventually of other external and internal forces applied to the same element A

kT  of the mechanism. 

We compute also the force of inertia inA
kf 0  and the resulting moment of inertia forces 0

inA
km  of an arbitrary 

rigid body A
kT  of mass A

km  and tensor of inertia A
kĴ  with respect to the centre of its first joint: 

0 0 0 0 0 0 0 0 0 0
ˆ ˆ{ ( ) }, { }inA A A A A A CA inA A CA A A A A A A

k k k k k k k k k k k k k k k kf m r m m r J J= − γ + ω ω + ε = − γ + ε +ω ω   ( 1,2,3)k = .          (3.1)

By intermediate of the conditions of connectivity (2.8), the absolute virtual velocities v
k

v
kv 00 , ω  are related to a 

set of independent relative virtual velocities. The fundamental principle of the virtual work states that a 
mechanism is under dynamic equilibrium if and only if the virtual work developed by all external, internal 
and inertia forces vanish during any general virtual displacement, which is compatible with the constraints 
imposed on the mechanism. Total virtual work contributed by the first input torque Am10 , for example, inertia 
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forces and moments of inertia forces and by the wrench of known external or internal forces can be written in 
a compact form. Applying the fundamental equations of the parallel robots dynamics [16], a compact matrix 
relation results for the first torque 

    T
10 3 1 21 2 32 3 21 2 21 2{ }A A Av A Av A Bv B Cv C

a a a am u M M M M M= + ω +ω + ω +ω . (3.2)

Two recursive relations generate the vectors 

                                  T T T
0 1, 1 0 1, 1 1, 1, 1,A A A A A A A A

k k k k k k k k k k k k k k kF F a F M M a M r a F+ + + + + + += + = + +  

     0 0
A inA A

k k kF f f ∗= − − , 0 0
A inA A
k k kM m m∗= − −  ( 1,2,3)k = . 

(3.3)

3.2. Lagrange equations 

A solution of the dynamics problem of the 3-RRR planar parallel robot can be developed based on the 
Lagrange equations with constraints. The generalized coordinates are represented by 12 independent 
parameters: 

1 0
Gq x= , 2 0

Gq y= , 3 0
Gq z= , 4 10

Aq = ϕ , 5 21
Aq = ϕ , 6 32

Aq = ϕ  

     7 10
Bq = ϕ , 8 21

Bq = ϕ , 9 32
Bq = ϕ , 10 10

Cq = ϕ , 11 21
Cq = ϕ , 12 32

Cq = ϕ . 
(3.4)

The Lagrange equations with nine multipliers 1 2 9, , ... ,λ λ λ  will be expressed by 12 differential relations [17]  

9

1

d { } ( 1, 2,..., 12)
d k s sk

sk k

L L Q c k
t q q =

∂ ∂
− = + λ =

∂ ∂ ∑ , (3.5)

which contain following 12 generalized forces 01 =Q , 02 =Q , 03 =Q , AmQ 104 = , 05 =Q , 06 =Q , BmQ 107 = , 

08 =Q , 09 =Q , CmQ 1010 = , 011 =Q , 012 =Q .                                                                                                                        
A number of nine kinematical conditions of constraint are given from the relations (2.8):  

)9,...,2,1(0
12

1
==∑

=

sqc
k

ksk
.   (3.6)

The general Lagrange function )(
2

1

CBA
p LLLLL νν

ν
ν +++= ∑

=

is expressed as analytical function of the 

generalized coordinates and their first derivatives with respect to time 

T
0

1
2

G
p p p p pL m v v m gz= − , T

1 10 1 10
1 ˆ
2

i i i iL J= ω ω T T
1 2 10 1
i Cim gu p r− , 

T T T T T T
2 2 20 20 20 3 20 2 20 20 2 2 2 10 21 21 2

1 1 ˆ ( )
2 2

i i i i i i i i i i Ci i i CiL m v v J m v r m gu p r p r= + ω ω + ω − + . 
(3.7)

The first derivatives of orthogonal matrices 1, −kkp  are computed as follows: 

   T
, 1 , 1 3 , 1

i
k k k k k kp u p− − −= ϕ , T T

, 1 , 1 , 1 3
i

k k k k k kp p u− − −= ϕ ,  , 1 T
3 , 1

, 1

k k
k ki

k k

p
u p−

−
−

∂
=

∂ϕ
, 

T
, 1 T

, 1 3
, 1

k k
k ki

k k

p
p u−

−
−

∂
=

∂ϕ
.               (3.8)

A long calculus about the partial derivatives and the expressions d { }
d k

L
t q

∂
∂

 leads to an algebraic system 

of 12 relations. In the direct or inverse dynamics problem, after elimination of the nine multipliers, finally we 
obtain same expressions (3.2) for the three input torques required by the three revolute actuators.  
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4. CALCULUS OF INTERNAL JOINT FORCES 

4.1. Principle of virtual work 

Above compact relations (3.2) and (3.3) can be also applied to calculate any joint force or joint torque 
by cutting successively each joint and considering several appropriate virtual displacements. 

For the calculus of two external forces acting in joint 1A , for example, we consider two different 
successive virtual displacements as follows 

 10 10 1
Av

av a u= , 10 0Avω = , 10 0Bv
aω = , 10 0Cv

aω = , 10 10 2
Av

av a u= , 10 0Av
aω = , 10 0Bv

aω = , 10 0Cv
aω = .  (4.1) 

Using the matrix conditions of connectivity (2.8), we determine two new sets of independent relative 
virtual velocities. Finally, the recursive relations (3.2) give the two joint forces: 

T T T
10 1 10 1 3 21 2 32 3 21 2 21 2{ }A A Av A Av A Bv B Cv C

x a a a af u a F u M M M M= + ω + ω +ω +ω , 

T T T
10 2 10 1 3 21 2 32 3 21 2 21 2{ }A A Av A Av A Bv B Cv C

y a a a af u a F u M M M M= + ω + ω + ω + ω . 
(4.2)

Analogously, the joint force Af21  in 2A  is quickly determined if we suppose others two virtual displacement 
in the robot’s kinematics, starting from the basic virtual velocities  

 21 21 1
Av

av a u=  or 21 21 2
Av

av a u= . (4.3) 

4.2. Lagrange equations 

For the planar mechanical system represented by the set of 12 variables ( ) ( )1 2 12, , .....,q q q q= , the 
Lagrange equations are completed with following differential relation [18]  

9

10
1

d { } ( 1, 2,..., 13)
d

A A A
y s sk

s

L L f c k
t w w =

∂ ∂
− = + λ =

∂ ∂ ∑ , (4.4)

where the vertical external force A
yf10  in the joint 1A , for exampla, as new generalized force can be found if  

a new fictitious mobility in accord with the joint is considered. 
Supposing 10 10 2

A A
wr r wu= + , 10 10 2 10 10 2,A A

w wv wa u wa u= γ = , we determine a new expression for the 

Lagrange function AL and we replace it in the formula (4.4). Considering again the mechanism, the joint 
force is obtained in following definitive form 

10 1 2 130
0
0

d ( )
d

AA A A
y w

w
w

Lf m m g
t w =

=
=

 ∂ = − + − λ  ∂  
. (4.5)

5. EXAMPLE 

As application, let us consider a 3-RRR planar robot which has the following characteristics: 
* *

0 0 1 2 1 2 30.025m, 0.025m, , 0.3m, 3, 0.3m, 3s, 3kg, 1.5kg, 5kg.
12

G Gx y r l r l l t m m m∗ π
= − = φ = = = = = ∆ = = = =  

Assuming that there is no external force and moment acting on the moving platform, the numerical 
study is based on the computation of the power required by each actuator 10 ,Ap 10 ,Bp 10

Cp  during the platform’s 
evolution. 
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Fig. 3 – Powers 10
Ap , 10

Bp , 10
Cp  of three actuators. Fig. 4 – Force 10

Af  in the external joint 1A  

Using the MATLAB software, a computer program was developed to solve the inverse dynamics of the 
planar parallel robot. To illustrate the algorithm, it is assumed that for a period of three second the platform 
starts at rest from a central configuration and rotates or moves along rectilinear directions. 

Following examples are solved to illustrate the simulation. If the platform’s centre G moves along a 
rectilinear planar trajectory without rotation of platform, the powers required by the actuators 1 1 1, ,A B C  are 
calculated by the program and plotted versus time (Fig. 3). Concerning the force 10

Af  in the external joint 1A , 
for example, this is given as follows (Fig. 4). For the second example we consider the rotation motion of the 
moving platform about 0z  axis with variable angular acceleration while all other positional parameters are 
held equal to zero. The powers of the actuators (Fig. 5) and the internal joint force 21

Af  in 2A  (Fig. 6), for 
example, are also determined by the program and plotted versus time. 

Fig. 5 – Powers 10
Ap , 10

Bp , 10
Cp  of three actuators. Fig. 6 – Force 21

Af  in the internal joint 2A . 

6. CONCLUSIONS 

In the inverse kinematics analysis some exact relations that give in real-time the position, velocity and 
acceleration of each element of the planar parallel robot have been established in the present paper. 

The dynamics model takes into consideration the masses and forces of inertia introduced by all 
component elements of the parallel mechanism. Based on the principle of virtual work or the Lagrange 
equations, the approach establishes also a direct determination of the time-history evolution for all forces in 
external and internal joints.  
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