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In this paper we model one variable of the 2002/2003 French Health Survey (The Body Mass Index-
BMI) in order to obtain regional estimations for the rate of overweight people. We construct the 
model, we derive the theoretical estimations for the parameters of interest . Then we test the fit of the 
model to the data and after deciding that the model is good enough we compute the estimations and 
their precisions. We conclude the paper with some directions for future research 
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1. INTRODUCTION 

The French Health Survey (FHS) is a large survey (almost 30,000 observations) taking place every ten 
years and collecting information on a large number of health variables (more than 200). The Direction de la 
Recherche, des Etudes, de l’Evaluation et des Statistiques (DREES) is responsible for the statistical 
exploitation of the FHS data. Part of its job is to obtain national estimations for some parameters linked to a 
series of FHS variables. In doing this DREES is helped by INSEE, the French Statistical Institute. INSEE 
computes these estimations by using its well established methodology based on the classical survey sampling 
theory. The classical survey sampling theory centres its inference on the survey sampling distribution which 
is generated by the survey design, the way the sample is selected.  

Recently there has been a growing demand for estimations at sub-national level. For instance, the 
French regional authorities are interested in estimating regional and county parameters (the French territory 
is divided into 22 regions, every region incorporating several counties, resulting in a total number of 96 
counties). Generally, the national surveys like FHS are designed to insure an adequate level of precision at 
national level. When it comes to regional/county parameters one can still use the classical survey sampling 
theory resulting in the same formulas for the estimators and their precisions as at the national level but using 
the regional/county samples. These samples are composed of the observations from the national survey that 
come from the region or the county of interest. For a lot of such sub populations called areas or domains 
these observations are not numerous. This is why they are called small areas or small domains. As a 
consequence the estimators based on the classical survey sampling theory called direct estimators have not 
an adequate level of precision and alternative methods should be used. 

The small area estimation is the new theory trying to improve the classical design-based survey 
sampling theory when it comes to estimating parameters at sub national levels. The key of the modern small 
area estimation is the modelling of the variable of interest population values and the use of the model to 
make inference. The model acts like a link between observations coming from different areas of the 
population. This is why when model-based an estimator for a sub population called indirect estimator uses 
the entire national sample, not only the sample coming from the sub population. Thus the indirect estimator 
is generally more precise than the direct estimator by borrowing strength from related areas. A detailed 
account of the small area estimation is given in Rao[3]. 

INSEE has not a methodology using small area estimation techniques. This is why DREES financed a 
research aimed at finding a small area methodology for regional and county parameters related to a number 
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of variables in FHS. The results presented in this paper are part of this research which can be found in an 
unpublished manuscript in Stefan[4]. 

The present paper deals with the estimation of regional rates of overweight people aged 20 or more. As 
a consequence the study variable will be the Body Mass Index (BMI). In section 2 we show how to construct 
a model which will be used to estimate the parameters of interest. In section 3 we test the fit of the model. In 
section 4 we obtain the theoretical formulas of the estimators and their standard errors. Then we use the 
theoretical formulas to compute the estimations and their standard errors. Finally, in the last section we draw 
some conclusions and specify directions for future research. 

2. COUNSTRUCTION OF THE MODEL 

The BMI is a variable computed by the formula BMI=Weight/(Height^2). A person is considered as 
overweight if its BMI exceeds 25, otherwise he or she is a normal weighted individual. We computed the 
body mass index of all the 26930 individuals in the sample aged 20 or more and transformed this variable 
into a 0-1 variable where 1 indicates an overweight person and 0 a normal one. We did this given the fact 
that the parameters of interest are the rates of overweight people. 

Then we undertook an exploratory analysis to see which are the variables that influence the BMI. Of all 
the variables in the date we retained four: the Region, the Sex and the Age indexed respectively by i, s and k. 
The Region has 22 values as the French territory is divided into 22 regions, the Sex has 2 values and the Age 
has 12 values because we transformed the Age from a continuous into a categorical variable with 12 values 
corresponding to the intervals [20, 24], [25, 29], [30, 34], …, [70, 74] and [75, 104], 104 being the age of the 
oldest person in the sample. As a result the population individuals are cross classified into 22 2 12× ×  cells 
with iskly  being the value of the binary variable BMI for an individual l in cell i s k× × . 

As BMI is binary in order to model its values we will use the Bernoulli distribution, that is 
~ Bernoulli( )iskly π  for an individual l=1,…, iskN , where iskN  is the population number of individuals in cell 

i s k× × . We mentioned that iskly  depends on region i, sex s and age k, so it is natural to believe that taking a 
common π  will result in a bad model. As a consequence we will consider a Bernoulli distribution of 
parameter iskπ  depending on region, sex and age and the first line of the model will be. 

~ Bernoulli( )iskl isky π , 

Next the probabilities iskπ  will have to be modeled. A natural choice would be the logit function: 

1 2 3logit( )isk i s kπ = β +β +β , 

where in order to avoid the redundancy we impose the usual corner constraints on the effects of the auxiliary 
variables 21 31β β 0= = . In order to verify that the above additive specification is correct or that some 
interactions between the three auxiliary variables were not omitted or that some important explanatory 
variables were overlooked, we tested the fit of the model incorporating an error term following a logistic 
distribution of mean 0 and of distribution parameter σ  (in this case we noticed that the logistic distribution is 
more appropriate than a normal one). Namely we replaced the above specification by: 

1 2 3logit(π ) β β β εisk i s k isk= + + + , 
ε ~ Logistic(0,σ)isk . 

The new model takes more time to run due to the new parameters εisk  and σ  and provided a slightly 
better fit that doesn’t offset for the longer estimation time. As a consequence we decided to keep the 
specification 1 2 3logit(π ) β β βisk i s k= + + . 

Due to the lack of information on the coefficients 1 2 3β ,β  and  βi s k , we conclude the hierarchy with 
non informative a priori distributions on these effects. We took normal laws of mean 0 and variance 1000 but 
a sensitivity analysis showed no influence of the a priori laws on the final estimations. As a consequence, a 
first hierarchical model will be: 
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Model 1 
~ Bernoulli(π )iskl isky  

1 2 3logit(π ) β β βisk i s k= + +  

1 2 3β ~ (0,1000),β ~ (0,1000),β ~ (0,1000)i s kN N N . 

As in Stefan[5] or Stefan[6], we tried to improve the fit of Model 1 by taking individual probabilities 
for the Bernoulli laws, that is by taking π iskl  instead of πisk . In doing this and given the results in Stefan[5] 
and Stefan[6] obtained for count variables we expect the same will hold true for the binary variable BMI 
meaning the new model will have a much better fit. The first line of the new model will be: 

~ Bernoulli(π )iskl iskly . 

As for the second line, in this case we must incorporate an error term εiskl  given the fact that πiskl  
depends on the individual l: 

1 2 3logit(π ) β β β εiskl i s k iskl= + + + , 
ε ~ Logistic(0,σ)iskl . 

We keep the same diffuse a priori distributions for the β  coefficients and took a gamma distribution of 
parameters 0.001 for the positive parameter σ . The second model will be: 

Model 2 
~ Bernoulli(π )iskl iskly  

1 2 3logit(π ) β β β εiskl i s k iskl= + + +  
ε ~ Logistic(0,σ)iskl  

1 2 3β ~ (0,1000),β ~ (0,1000),β ~ (0,1000)i s kN N N , σ ~ G(0.001,0.001) . 

Apart the logit function there is an alternative function for the parameter π  of a Bernoulli distribution 
namely the probit function. We wanted to include in our analysis models using the probit function in order to 
compare the fit of these models with those of models 1 and 2 above. We kept the same specifications as in 
models 1 and 2 but replaced the logit by probit and the logistic distribution by the normal distribution that we 
found more appropriate in this case. Thus we obtain two new models denoted Model 3 and Model 4 which 
are given below: 

Model 3 
~ Bernoulli(π )iskl isky  

1 2 3probit(π ) β β βisk i s k= + +  

1 2 3β ~ (0,1000),β ~ (0,1000),β ~ (0,1000)i s kN N N ; 

Model 4 
~ Bernoulli(π )iskl iskly  

1 2 3probit(π ) β β β εiskl i s k iskl= + + +  
2ε ~ (0,σ )iskl N  

1 2 3β ~ (0,1000),β ~ (0,1000),β ~ (0,1000)i s kN N N , σ ~ G(0.001,0.001) . 

3. MODEL FIT 

In the previous section we showed how to construct models for BMI. We now test the fit of these 
models to the data in the 2002/2003 French Health Survey. We will use the 26,930 individuals older than 20 
I the sample and the tools in Stefan [5, 6] adapted to a binary variable. There are two categories of measures 
of fit: those that help selecting between several models and those telling if a model is good enough for 
making inference. In this section, for notation facility i designates an individual. 
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Let obsy  be the vector of all the observations. One way in which a model fit can be tested is to generate 
for every individual i in the sample new observations ,new iy  from the posterior predictive density ( | )i obsf y y  
and to compare the vector of these new observations newy  to obsy . It can be shown that a new value ,new iy  can 
be sampled from ( | )i obsf y y  as follows: for each individual i we have the Markov chain {π }g

i  corresponding 
to πi  obtained by estimating the model (see the next section). After the burn-in period the values { }g

iπ  come 
from (π | )i obsf y ; we considered a burn-in period of 2000 iterations after which the chains reach 
convergence and used the next G = 1,000 iterations ; for each of the 1000 iterations we generated ,

g
new iy  by 

sampling Bernoulli(π )g
i . So newy  will be a 1000 26,930×  matrix. 

We will use three measures of discrepancy between obsy  and newy : 
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The numerical results can be found in Table 1. We can notice that Model 2 provides a much better fit 
than the other three models. The large improvement was achieved by incorporating individual Bernoulli 
probabilities πiskl  the price to pay being a model that takes longer to estimate but offering a much better fit to 
the data. 

Another interesting feature in Table 1 is that a larger number of parameters in a model doesn’t 
necessarily guaranty for a better fit. Model 4 like Model 2 has individual probabilities πiskl  but as a link 
function it uses probit instead of logit. Nonetheless the values of the measures of discrepancy are slightly less 
than those under Model 1. 

Table 1 

A posteriori means of the measures of discrepancy 
Measure Model 1 Model 2 Model 3 Model 4 

( ( , ) | )new obs obsE T y y y  6979.234 2777.125 7187.943 6939.522 

( ( , ) | )new obs obsE d y y y  11605.21 4589.38 12270.16 11457.77 

( , )new obsD y y  5281.76 2088.72 5584.39 5214.65 

 
As a consequence we conclude that Model 2 is the best among the four models constructed in the 

previous section. We now have to check if Model 2 is well adapted to the data in the sample. In order to do 
this we introduce two measures of discrepancy between a vector of observations y and a vector of Bernoulli 
probabilities π . The first is called Deviance and is given below: 
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Deviance ( , ) 2 log( ( | π )),i i
i

f y= − ∑y π  

where ( | π )i if y  is the density function of the Bernoulli( )iπ  distribution. The second denoted Dis( , )obsy π  
was already used in Stefan[5,6] but below its formula is adapted for the case when the variable under study is 
a 0-1 variable: 

2( )Dis( , )
(1 )
i i

i i i

y π
π π

−
=

−∑y π . 

 Both Deviance( , )y π  and Dis( , )y π  allow one to verify if a model is good enough by estimating the 
probabilities that Deviance( , ) Deviance( , )new obs≥y π y π  and Dis( , ) Dis( , )new obs≥y π y π . The probabilities can 
be estimated by: 

1
1ˆ [Deviance( , ) Deviance( , )],g g g

new obs
g

p I
G

= ≥∑ y π y π  

and 

2
1ˆ [Dis( , ) Dis( , )]g g g

new obs
g

p I
G

= ≥∑ y π y π . 

Values of 1 2ˆ ˆ and p p  close to 0.5 indicates a good fit while values less than 0.1 or higher than 0.9 
indicates a bad fit and a model that has to be rejected. In Table 2 we present the values of 1 2ˆ ˆ and p p  under 
the four models. Table 2 shows that Model 2 is well fit to the data and can be used to estimate the regional 
rates of overweight people. 

Table 2 

Values of 1 2ˆ ˆand p p  

Probability Model 1 Model 2 Model 3 Model 4 

1p̂  0.068 0.518 0.999 0.335 

2p̂  0.034 0.5 0.994 0.248 

 
Under each model we can plot Deviance( , )obsy π  against Deviance( , )newy π  represented in Fig. 1 and 

Dis( , )obsy π  against Dis( , )newy π  represented in Fig. 2. Under a good model half of the points are under the 
y x=  line and half are above the y x=  line. Figures 1 and 2 show that under Model 2 the points are equally 

distributed under and above the y x=  line. 

4. PARAMETERS ESTIMATION 

In this section we will estimate the parameters of interest which are the regional rates of overweight 
people denoted by , 1,...,22ip i = . We will use the principles of Bayesian statistics which consist of 
estimating a parameter by its posterior mean and the precision of this estimation by its posterior variance or 
standard error. Thus, our estimators will be ˆ ( | )i i obsp E p= y  and their variances ˆ( ) ( | )i i obsV p V p= y . So the 
focus of the Bayesian statistics is the posterior distribution of a parameter that is the distribution of the 
parameter after the sample was selected. Generally this distribution cannot be obtained in a closed form but 
in order to have ( | )i obsE p y  and ( | )i obsV p y  it is sufficient to get a sample from the posterior distribution. 
Then ( | )i obsE p y  and ( | )i obsV p y  will be approximated by the sample mean and the sample variance 
respectively. 
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Fig. 1 – Deviance( , )g
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Fig. 2 – Dis( , )g
obsy π  vs. Dis( , )g g

newy π . 

Like in Stefan [5, 6] we divide the individuals in a region in two parts: the sampled iobs  and the non 
sampled inobs  individuals. Then the rate of overweight people in region i will be: 

1 ( )
i i

i iskl iskl
s k l obs s k l nobsi

p y y
N ∈ ∈

= +∑∑ ∑ ∑∑ ∑ . (1)
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Taking the a posteriori mean of (1), one will get: 
1ˆ ( | ) [ ( | )]

i i

i i obs iskl iskl obs
s k l obs s k l nobsi

p E p y E y
N ∈ ∈

= = +∑∑ ∑ ∑∑ ∑y y . (2)

It can be proved (see Stefan[4, p. 95]) that for an individual 0 il nobs∈ , ( | ) piiskl obs iskE y =y , where 

0
pi (π | µ ,σ)isk iskl iskE= . Denoting iskN  and iskn  the population and the sampled individuals in cell i s k× ×  
respectively (2) will become: 

1ˆ [ ( ) (pi | )]
i

i iskl isk isk isk obs
s k l obs s ki

p y N n E
N ∈

= + −∑∑ ∑ ∑∑ y . (3)

Let’s denote 1 2 3µ β β βisk i s k= + + . By estimating Model 2 we get Markov chains for the parameters of 
the model denoted 1 2 3β ,β ,β  and σg g g g

i s s  (the Markov chain for µ isk  will be 1 2 3µ β β βg g g g
isk i s s= + + ). The 

parameters piisk  are not part of Model 2 so by estimating the model we will not get Markov chains for piisk . 
Nonetheless given how piisk  were defined one can construct Markov chains for them. Let ( | σ)f x  be the 
density function of a logistic distribution of mean 0 and dispersion parameter σ . Then: 
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 The integral cannot be computed exactly thus we will approximate it as follows: for each Markov chain 
iteration 1,...,g G=  obtained by estimating Model 2 we generate , 1,...,10,000g

ax a =  values from the logistic 
distribution of mean 0 and distribution parameter σg ; then we take the g iteration of piisk  Markov chains as: 
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 In a similar manner as in Stefan [4, p. 96] by taking the a posteriori variance of (1) one will get 
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 (5)

We estimated Model 2 and obtained the Markov chains of 1 2 3β ,β ,β  and σg g g g
i s s . For each parameter we 

run three Markov chains in order to monitor the convergence. We noticed that after a burn-in period of 2,000 
iterations the three Markov chains converged. In order to save space in Fig. 3 we show the three Markov 
chains only for parameter σ  of the model. 

 
sigma chains 1:3

iteration
1 500 1000 1500 2000

   0.0

   1.0

   2.0

   3.0

 
Fig. 3 – Markov chains of σ . 
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As a consequence for each parameter we dropped the first 2,000 iterations an run the chains for 2,000 
more iterations. Thus we used 6000 iterations for computing ˆ ip  and ˆ( )iV p  based on (4) and (5). The results 
are showed in Table 3 below: 

Table 3 

Regional estimations of overweight people rates (%) age ≥20 
Region Estimation Standard Error 

 
Quantiles 

0.025;0.5;0.975 
Ile de France 9.05 0.35 8.37;9.04;9.75 

Champagne-Ardenne 13.5 0.79 11.98;13.48;15.12 
Picardie 14.38 0.82 12.76;14.37;16.03 

Haute-Normandie 12.76 1.47 9.94;12.74;15.76 
Centre 14.18 1.38 11.62;14.12;17.06 

Basse-Normandie 13.94 1.51 11.16;13.90;17.13 
Bourgogne 11.74 1.33 9.33;11.69;14.51 

Nord Pas de Calais 15.47 0.70 14.13;15.48;16.84 
Loraine 14.85 1.23 12.51;14.81;17.38 
Alsace 15.28 1.46 12.54;15.25;18.22 

Franche Comté 10.16 1.37 7.74;10.06;12.99 
Pays de la Loire 9.90 0.83 8.34;9.88;11.61 

Bretagne 10.12 0.98 8.30;10.08;12.15 
Poitou Charente 11.32 1.34 8.86;11.25;14.11 

Aquitaine 9.73 0.96 8.02;9.66;11.82 
Midi-Pyrénées 9.27 1.00 7.45;9.21;11.39 

Limousin 10.85 1.99 7.64;10.62;15.23 
Rhône Alpes 9.27 0.81 7.86;9.21;11.02 

Auvergne 11.87 1.73 8.76;11.76;15.54 
Languedoc-Roussillon 9.05 1.09 7.12;8.98;11.38 

PACA 7.76 0.49 6.83;7.76;8.75 
Corse 18.57 6.10 8.35;18.08;31.43 

 
In Fig. 4 we plotted the coefficients of variation versus regional sample size. In Stefan [5, 6] we could 

compare our results based on the small area theory with the values INSEE obtained by using their 
methodology based on the sampling design. Unfortunately for the BMI INSEE didn’t provide any results so 
we couldn’t plot in Fig. 4 the INSEE coefficients of variation. 
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Fig. 4 – Coefficient of variation versus size of the regional sample size. 

5. CONCLUSION 

The objective of this paper was to estimate the regional rates of overweight people based on data in the 
2002/2003 French Health Survey and using a small area methodology. The key of the small area theory is to 
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model the data, test the fit of the model to the data and derive the numerical estimations. We showed how 
possible models can be constructed and how to choose between several options. Then we showed how a 
posteriori mean and variance can be derived for the parameters of interest. In this paper the variable under 
study is a binary variable so we underlined the necessary modifications to the methodology compared to 
Stefan[5, 6] where the interest variables were count variables. 

In deriving the formulas (4) and (5) we supposed that the cell sample sizes iskn  are non-random. In 
practice this is generally not true. In the classical survey sampling theory computations using random iskn  are 
not feasible, that’s why under such circumstances analyses are conditional on the realized sample sizes. In a 
full hierarchical Bayesian context Oleson and al.[2] proposed a model accounting for random sample sizes 
and also random population sample sizes. Based on their paper we will extend our present work. 

Survey sampling are generally characterized by nonresponse and FHS is no exception. If not properly 
accounted for the nonresponse can lead to biased estimation. In our paper we supposed that there is complete 
response. In fact we removed the individuals or which we couldn’t compute the BMI and performed our 
analysis on the remaining ones. Nandram et al. [1] and the references therein constitute a large literature to 
see how the nonresponse in FHS can be properly dealt with in a full hierarchical Bayesian context. 
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