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The paper proposes a new and unitary approach of adaptive output feedback control for non-affine 
uncertain systems, about which the positive knowledge refers to the relative degree r. Given a 
reference model, the objective is to design a controller that forces the measured system output to track 
the reference model output with bounded error. The components of the so called pseudocontrol, 
thought on a superposition effects principle, are the following: 1) the output of reference model, 2) the 
output of a Kalman type stabilizing compensator of the pair of systems composed by a) an output 
dynamics of a set of integrators of order tantamount to the assumed known relative degree r of the 
controlled system and b) an internal model, of order r – 1, oriented to the tracking error decreasing in 
the presence of step input signals, and 3) the adaptive control designed to approximately cancel the 
error of approximate dynamic inversion by virtue of whom the real control is hereby determined from 
pseudocontrol. A single hidden layer neural network is used to counteract this dynamic inversion 
error. The classical approach of pseudocontrol design based on tracking error dynamics estimation is 
evaded. A proof of stable working of this intelligent type controller is sketched. The mathematical 
model for the longitudinal dynamics of an experimental helicopter is used as framework of synthesis 
and validation by numerical simulations.  

Key words: Uncertain systems; Adaptive control; Dynamic inversion; Neural network; Kalman synthesis; 
Helicopter mathematical model; Numerical simulation. 

1. INTRODUCTION 

One of the most important problems in control theory is that of controlling a system in order to have its 
output tracking a given reference signal. In practice, whatever system appears as only approximately defined 
by differential equations, in other words, as uncertain. A way in treating the control of uncertain systems is 
the adaptive control. Research in this field is of particular importance, taking into account the emerging 
applications such as modern fighter and civilian aircrafts, unmanned aerial vehicles (UAV), flexible 
structures, robotics, flow physics, combustion processes and so on. Indeed, modelling for all these 
applications suffers of uncertainty, both in parameters and dynamics.  

To highlight the framework of the paper, let the dynamics of an observable [1] nonlinear single-input-
single-output (SISO) non affine system be given by the equations  

( ) ( ), ,u y g= =x f x x� ,  (1)

where nD∈ ⊂xx R  is the state vector, ,u y ∈R  (for sake of simplicity) are the input signal (control), 
respectively, the output signal (measurement), and f , g are uncertain functions, sufficiently smooth; 
moreover, n  need not be necessary prescribed! For this real or virtual system, e. g. a helicopter or its 
mathematical model, various problems are stated in control theory. Let consider such a problem: design 
(more specific, synthesize) a control law ( )yu , which uses the available measurement y , so that the 

measured and controlled output y to follow asymptotically a prescribed reference signal ( ) r
rmy t C∈ (the 

class of continuous functions with continuous derivatives until de order r ). In fact, this is the problem of 
trajectory tracking for an airplane or rocket, for example. In addition, the control law u is subjected to 
saturating restrictions, Muu < .     
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A premise of solving the problem is the ability of the artificial intelligence techniques – of neural 
networks (NNs), for example – in compensating the lack of system knowledge, in other works, in 
compensating the uncertainties in its modeling. For systems such as (1), let consider a relative degree r n<  
and the fulfilment of feedback linearization conditions stated in [1]. This means that a certain state 
coordinates transformation involving Lie derivatives ( )i

fL h  will operate, and the system will be rewritten in 
the normal form  

( ) ( ) ( ) ( )
0 1 11, ..., 1, , , , , , , : r

i i r r r fi r g u y g u L gϕ ϕ ξ ξ ξ ξ ξ χ ξ ξ χ+= , , = , ..., =  −  =   =   =f � �� .  (2)

χ is the state vector associated with the zero dynamics ( )0 0,χ χ= f� . These considerations are not hazardous, 
because in any system the output depends finally on input. Feedback linearization is then performed by a 
transformation of variable  

( )ˆ ,rv g y u= , ( )1ˆ ,ru g y v−= ,  (3)

where v is the so-called pseudo control and ( )ˆ ,rg y u  represents any available approximation of ( ), ,rg uξ χ  
that is invertible with respect to its second argument. Thus, the uncertain system (1) will be represented by a 
linear dynamics of r  integrators 

( ) ( ) ( )ˆ, : , , ,r
r ry v g u g y uξ χ= + ∆   ∆ = −  ,   (4)

where ∆  is the dynamic inversion error, which acts as a disturbance signal on system. In fact, making ( )1−n  
times Lie derivatives of the function ( )g x  yields 

( ) ( ) ( ) ( )1 1, , , n n
f fy g y L g x y L g− −= = =x x� … .  (5)

Observability hypothesis in (1) ensures that the right side of system (5) has a full rank and, taking into 
account (3) and the condition of relative degree r ,  the following implicit dependence can be stated 

( ) ( )( )1 1n n ry y y v v v− − −=x F , , , , , , ,� �… … .  (6)

A similar expression is obtained for the error  

( ) ( ) ( )( )1 1, , , , , , , ,…,n n ry v G y y y v v v− − −∆ =  x � �… .  (7)

A theorem of Kolmogorov-Sprecher type [2], [3] ensures the existence of a NN so that ∆  may be 
approximated with good accuracy when the network is operating only on the input-output data (d – a sample 
time) 

( ) ( ) ( )( ) ( ) ( ) ( )( )1 1 1, , , 1 , ., 1 , , 0y t y t d y t N d v t ,v t d ,… v t N r d N n d− − − − − − − ≥ >… .  (8)

2. A NEW AND UNITARY DESIGN OF ADAPTIVE CONTROLLER 

During the last decade, adaptive methods based on NNs have been developed to control uncertain 
systems. Remarkable results are reported in the literature [4–9]. Pioneering works in the field are the 
references [10, 11]. A state-of-art of the adaptive output feedback control of uncertain systems, in which both 
the dynamics and the dimension of the regulated plant may be uncertain, and only the knowledge of the 
relative degree r  is claimed, is summarized in [12]. The present paper proposes a new and unitary strategy 
of adaptive controller design, centered on the works [13, 14], wherein a stabilizing compensator was built for 
a pair plant-internal model of exogeneous signals. This strategy is presented step by step with reference to 
Figs. 1, 2 and to a service model – the pitch channel dynamics of R-50 experimental helicopter [6] ( τ is 
actuator time constant)  
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( ) ( ) ( )ct t t= + δAx x B� , y = θ , (9)
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The state variables are: u  – forward velocity; w  – vertical velocity; q  – pitch rate; θ  – pitch angle; β  – 
control rotor longitudinal tilt angle; δ  – actuator state; c uδ ≡  – the control variable, longitudinal cyclic 
input. Worthy noting, the system (9)-(10) is only a pretext in view of controller validating by numerical 
simulations. Control objective is the following: the system output y  is required to track a known bounded 
input cy . Main sources of unmodeled dynamics are the control rotor dynamics and control delay time: 

( )c tδ  is really ( )c dt Tδ − . As main assumption on system, the relative degree was assumed: one can see that 
in (9–10) the controlled output θ  has relative degree 3r = .  
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The pseudo control in (3) is chosen to have the form [4–9] 

addcmr vvvv −+= . (11)

The three components are: rmv  – the output of a reference model, dcv – the output of a stabilizing 
compensator for the linearized dynamics in (4) with 0∆ =  and adv  – the adaptive control signal designed to 
approximately cancel ∆ . Thus, the control objective is the following: the system output y  is required to 
track a known bounded input rmy , rather than cy  

By virtue of assuming in synthesis only the minimal knowledge about relative degree, the dynamics of 
the output, with a key parameter 0b  in design, is (see Fig. 1) (with Laplace variable s ) 

( ) ( )∆+= vsGy d , ( ) 3
0: /dG s b s= . (12)

Aiming to correlate the blocks in view of structure simplifying, the block in upper loop is conceived as 

 ( )/rm rm dv y G s=  (13)

and substituting (12) in (11), one get, taking into account the substratum of adv synthesis, the error dynamics 

( ) 3
0 / 0, :dc ad rme b v v s e y y+ − + =  = −∆  or  3

0 / 0dce b v s+ ≅ . (14) 

At this point, an ordinary reflection concerns the necessity of completion the error dynamics by introducing a 
stabilizing compensation by means of a dcv  control component. Let note that the treatment of the question in 
the quoted references (e.g., [6]) suffers of some lack of coherence and clarity concerning the theory and 
exemplification of compensation selection. Another, unitary viewpoint of approach is now proposed. 
Consider, thence, the output dynamics as object and framework of dcv component synthesis. The procedure 
used in [13–14] is invoked: for the order 3 integrator plant (12) (with the state vector x ), two compensators 
are designed, a) a servocompensator (internal model) (with the state vector η ) and b) a stabilizing 
compensator (with the state vector ˆ Ex ), see Fig. 2. As stabilizing compensator for the system ( x , η ) is 
considered the well known Kalman filter [15, 16, 3]. Two pairs of matrices are thus introduced: the pair 
( )w , QξQ  of white noise matrices, parameters of the estimation Riccati equation, which provides filter 

gain fK , and the pair of weighting matrices ( )J JQ ,R , parameters of the control Riccati equation, which 
provides control gain RK . JQ  weights the herein performance output :p Ey η= = pC x , as a measure of error 
e  integral, and JR weights the control :dcv u= . Then, the open loop triplet system will have the form 

( )
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 (15)

The state vector η  must have in principle the dimension 1 2r − =  [4], and the selection of matrices 

cBcA , aims to obey the property of internal model for step input signals [14]: .c cA B� The Kalman filter 
output ˆRK Ex  will be used as control variable dcv  in the manner (available η  is taken in calculation) 

[ ]0 1RK = K , K , 0 1 0 1ˆdcv η η= − − = − −K K K KEx x� , [ ]0 0 0 0=K K� . (15′)

Thus, the closed loop system for the stabilized output dynamics, with Hurwitz matrix clA , is given by 
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Bringing now in attention the complete equation of error (14), let proceed therein to the substitution of 
the control component value 0 1Exdcv η= − −K K� . The error dynamics  system will have the form ( 1 : )e e=  
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or, in matrix-vector describing 

( ) ( )ad 1 2 ad 1 2:= : :rm
rm

y
v y y v , ,

y
 

= + −∆ + + + −∆ +  =      
 

A A D DE E B D D E B y D D y =� . (17′)

Summarizing until this point, we have to run on computer the system (17) with the inputs ,adv − ∆  y  
and providing the output E  as input for the equations of control component adv  synthesis, see below. Thus, 
it is important to underline the evading in this work, as not being strictly necessary, the use of an error 
estimation Ê  [5]-[7], [9]. Worthy mentioning, also: the choice of key parameters 0 , , , , ,w J J pb Q Q R    Q Cξ  is 

performed until leads, by a trial and error process, to a stable matrix A .  
The following step of design concerns the getting of adaptive control component adv . As mentioned in 

Introduction, the dynamic inversion error described in (2)-(4) will be counteracted using the property of 
universal approximator of a NN [2], [3]. 

Given 1z nR∈ , a three layer-layer NN (with a single hidden layer) has an output given by 

2 1

, 3 , 2
1 1

, 1, , , , 1, ,
n n

k W Wk j k j j V Vj i j i
j i

f b w k n b v z j n
= =

 
= θ + σ  =  σ = σ θ +  =  

 
∑ ∑… … , (18) 

where 1 2, ,n n and 3n  are the numbers of input nodes, hidden layer nodes, and outputs, respectively. ( )σ ⋅  is 
so called activation function, ,i jv  are the first-to-second layer interconnection weights, ,j kw  are the second 

to third layer interconnection weights, ,V Wb b  are bias terms, Vjθ  acts as thresholds for each neuron, 

Wkθ allows the bias term Wb to be weighted in each output channel. In fact, such architecture 

( )T= σWf z  (19) 

is a universal approximator of piecewise continuous nonlinearities with “squashing”  activation functions 
[17]. Accordingly, a general function ( ) 1nkC D R∈   ∈ ⊂y z , z  can be written as 

( ) ( ) ( )Ty z z z= +W σ ε , (20)

where ( )zε  is the functional reconstruction error. The essential results are expressed as Theorem, hereby:  

Given 0>ε∗ , there exists a set of bounded ideal weights, W, such that ∆  (7), associated with the 
system (1)-(4), can be approximated over a compact set D D R⊂ ×x  by a linearly parameterized NN  
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( ) ( )T T , ∗= + <∆ σ µ ε µ ε εW V  (21)

using the past input/output history vector derived from (8) and ( )σ ⋅  as any squashing function, 

( ) ( ) ( ) 1
T 1T T1 , nt t t Rµ µ + =  ∈ d dv y  (22)

(Note that for systems with full relative degree no past input/output history is required [5, 18]). 
Thus, the scalar output of the adaptive element in Fig. 2 will be designed as  

( )T Tˆ ˆ: = Wadv Vσ µ , 
 

(23)

(see [4–9]) with ( ) ( ) ( ) ( )2 3 1 21 1,n n n nR R+ × + ×∈  ∈VW , if threshold and bias terms are considered, 3 1n =  herein, and 
the following weights adaptation laws  

( ) ( ) ( )T T T T T
0 0

ˆ ˆ ˆ ˆ ˆ ˆ, ,V k k   ′ ′= − + −  = − − + −  −   V Γ P V V Γ V P A P + PA = QWµE BW σ W σ σ µ E B W W� � (24)

( )0 0WV ,  are initial guess of NN weights, 0>Q  is a suitable matrix, 0k >  is a sufficiently large constant 

adaptation gain, and , 0V W  >ΓΓ , of appropriate dimensions. V̂  and Ŵ  are inner (hidden) layer weight 
matrix and, respectively, outer layer weight vector, which must to be updated on line. The other notations 
stand for 

( ) ( ) ( )T1 : , : diag
1 e i i

i
i i

iz−

 ∂′= = , =  =   ∂+  
a zz V z σ

σ σ σ σ µ σ , (25)

where σ  is a sigmoidal function [17] and a  is an activation potential. Worthy noting, in all above quoted 
references, instead of output vector E , an estimate Ê  was considered, but evaded herein, as mentioned  
before.  

Following now an used machinery [4–7], define 

* *ˆ ˆ ˆ ˆ, ,
0 

−  −  =  , <  < 
 

V = V V Z V V
0 V
W

W = W W, W W
�

� � �
� . (26)

Thus 

( ) ( )T T T T
1 2 1 2

ˆ ˆ , , 0, 0ad adv v− ∆ = − −  − ∆ ≤ +  >  >V V ZW W �σ µ σ µ ε α α α α . (27)

Then 

( ) ( ) ( ) ( ) ( )2T T T T T T T T T T T Tˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ' ' , : , : 'w w− = − + +  =  = −V V V V V V VW W W W W W� � � �σ µ σ µ σ σ µ σ µ σ σ µ σ µ µ O . (28)

Other very important assumptions are made 
* *, 0, Myµ µ µ≤ >  ≤y . (29)

A bound over the compact set D  thus holds 

1 2 1 2, 0, 0w ε γ γ γ γ− ≤ +  >  >Z� . (30)

Therefore, the error dynamics in (17′) can be written  

( )( )T T T Tˆ ˆˆ ˆ ˆ' ' wσ σ µ σ µ ε= + − + + − +A V V DE E B W W y� � �  (31)

subject to (29), (30).  
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The stability of the closed loop dynamics (17′) is a consequence of a mutatis mutandis similar 
reasoning as that developed in [5], for example. Consider the following Lyapunov function candidate 

( ) ( )T 1 T 1tr / 2 tr / 2W VL − −= + +P Γ V Γ VTE E W W� � . (32)

The derivative of L  along (17′), after some not very difficult calculations, will be so bounded 

[ ] ( ) ( )
( ) ( )

T T T
0 0

2 2 22
min 1 2 0 0

ˆ ˆ2 2 tr tr ,

2 / 2 , : / 2M

L w k k

L Q k Z y Z k

   = − + − ε + − − −   

 ≤ −λ + γ + γ − + +  = − + − 

E E E B E y W W - W

E B E D W W

� � �

� � �

Q P PD V V V

P Z Z V V
(33)

and further allows for the following upper bound (note that ( )2 Ttr=A A A ) with appropriate upper bounds 

( )( ) ( )
( )( ) ( ) ( )

222
min 2 1

22
2 min 1

1 2 / 2 ,

2 / 1 , / / 2 ,

M

M

L k Z Z y

Z y k

  ≤ − λ − − γ − − γ − −    

> γ λ −  > + − γ

E E B B D

E B B

� �

�

Q P P

P Q Z D P
 (34)

which will render 0L <� outside a compact set. 1γ  includes the unknown constant *µ , 2γ  includes *ε . A 

standard reasoning [5] ends proof: the feedback control law given by (30), (11), (13), (15′), (27) guarantees 
that all signals V~,W~E,  are ultimately bounded, provided compact set D  is sufficiently large and other three 
specific assumptions are fulfilled [9]: A1) stable zero dynamics; A2) ( ) u/u,gr ∂∂ x is continuous and 
nonzero for every ( ) RDu, ×∈ xx ; A3) ( )ˆ , /rg y u u∂  ∂  is continuous and nonzero for every ( ) RDuy, y×∈  and  

( )ˆsign , /rg y u u ∂  ∂  = sign ( ), /rg u u∂ ∂x , (35)

for every ( ) RDDuy,, y××∈ xx . 
As concerning the reference model, the representation is chosen as a third order filter 

( )( )
2

1 2
2 2

1 2 22rm cy y
s s s

ω ω
=

+ ω + ζω + ω
,  (36) 

where 1 2, ,ω ζ ω   stockpile some information  – if this is available – about the basic, low modes, of the plant 
(in our case, represented by the system (10)). 

The following point of design must provide an approximate inversion law as well as (3) and, 
consequently, the real control c uδ ≡ . To be consequent in our approach, let assume in the sequel an 
enhanced level of uncertainty and evade the direct use of equations (10). A simple, heuristic approach on 
flight mechanics enables us a series of inferences on the dynamics of output y = θ  

( ) 2ˆ, : , , : / / , /q r q q c r q cy y q y M q M y g M M q M M M g M q Mδ δ δ δ δ= θ  =  ≈ + δ  = = + δ − δ τ + δ τ  = + δ τ� �� ��� , (37)

Assume, however, that below rg  is not the exact expression derived from applying feedback linearization 
mapping on (10).  Now taking into account (12), 

2
0 /c qb v y M M qδ≅  = δ τ +��� , (38)

therefore the inversion is performed 
2

0
ˆ ˆ: /c qu b v M q M δ = δ = τ −  , (39)

where ˆ ˆ,qM M δ  were introduced to account for parametric uncertainties in ˆ ˆ,qM M δ , respectively. Note that 
with measured output y = θ , the derivative y q=�  is available and considered in the above relations, but the 
variable δ  is ignored. Given that our approach is rather physical than theoretical, assumptions A2, A3 are implicit.  
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3. NUMERICAL SIMULATION AND CONCLUSION 

Numerical simulations have been performed to investigate the performance of the proposed adaptive 
controller. For the sake of rigor, canonical coordinates transformation [1] on system (10) was done and the 
zero dynamics were proved to be asymptotically stable, but with correction 100=βM . Further on, the 

system parameters were as follows: 0.05sτ = ,  ,rad/s101 =ω   ,.250=ζ   rad/s,5252 .=ω   1 15n = ,  2 5n = , 
ˆ 0.6 ,M M=   δ δ , ˆ 2q qM M=  [ ]0 0 0 1000 1000 ,p =  C  910 , 100, 100,J JR Q Q− =   =   =  ξ  

[ ]1 10 100 0.1 0.01 =wQ ,  v 16 w 6, I ,=  =Γ I Γ   [ ]T 6 1
0 0.001 1 1 ,R ×= × ∈W "  16 5

0 0.001 ,×= × ∈  V U R

[ ]T0 001 0
100 10000

0 0 001
− 

=  = − 
cA c

.
, B

.
. U  is a matrix with all entries 1; 10=Q I .  A stable matrix A  

occurs. The stabilizing compensator then emerged:  

[ ] [ ]T T9 9
0 110 3.51 0.001 0.000000621 0 0 10 0.316 0.316= × = × − −K , K� , 

[ ]T2.01 2.03 0.99 99.99 9999.99f = − −K  

An excellent working of the proposed control law, in conditions of increased parameter and structural 
uncertainty concerning the system in comparison with usual approaches [5]-[8], is illustrated in Fig. 3. 
Worthy noting, an improving of tracking properties y  versus rmy by trail and error procedure can be still 
reached.  

The main conclusion of the work refers to the proposal of a new, unitary conceived, control law 
builded in an uncertainty framework and based on use of Kalman synthesis dynamic compensation and NN 
to counteract the feedback linearization errors. A sketch of stable work of the controlled system is presented. 
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Fig. 3 – Time history of controlled output y  in the presence of step cascade input signal cy ; rmy – reference model. 
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