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This paper develops Bayesian and non-Bayesian analysis in the context of record statistics values 
from the modified-inverse Weibull distribution. We obtained non-Bayes estimators using MLE and 
Bayes estimators using the squared error loss function (quadratic loss) and LINEX loss function. This 
was done with respect to the conjugate prior for the shape parameter. The results may be of interest in 
a situation where only record values are stored. 
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1. INTRODUCTION 

Drapella in [9] calls the inverse Weibull distribution the complementary Weibull distribution, Jiag et al. 
in [11] have discussed some useful measures for the inverse Weibull distribution. 

The inverse Weibull distribution plays an important role in many applications, including the dynamic 
components of Diesel engines and several dataset such as the times to breakdown of an insulating fluid 
subject to the action of a constant tension; see [14]. Calabria and Pulcini in [8] provide an interpretation of 
the inverse Weibull distribution in the context of the load-strength relationship for a component and 
Maswadah in [12] has the fitted inverse Weibull distribution to the flood data. For more details on the 
inverse Weibull distributions see for example [13]. 

Record values and the associated statistics are of interest and importance in many areas of real life 
applications involving data relating to industry, economics, lifetesting, meteorology, hydrology, seismology, 
athletic events, and mining. Many authors have studied records and associated statistics. Among others are 
Ahsanullah in [1, 2], Arnold et al. in [3], [4], Gulati and Padgett in [10], Raqab and Ahsanullah in [24], 
Raqab in [23], Sultan in [28] and Preda et al. in [22]. On the line of papers [17, 18, 19] and [20] we can 
formulate some problems of such type. 

2. PRELIMINARIES 

Let …321 ,, XXX  a sequence of independent and identically distributed (iid) random variables with 
cdf )(xF  and pdf )(xf . Setting ),,,,min( 321 nn XXXXY …= , 1≥n , we say that jX  is a lower record 
and denoted by )( jLX  if 1−< jj YY , 1>j . Assume that )()3()2()1( ,,,, nLLLL XXXX …  are the first n lower 
record values arising from a sequence }{ iX  of iid modified-inverse Weibull variables with pdf 

( ) 1( ) e , 0, , , 0
xx x ef x x x x

−β −λ−β− −λ −α= α β + λ ≥ α β λ >  (1)
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and cdf 

( ) e , 0, , , 0
xx eF x x

−β −λ−α= ≥ α β λ >  (2)

where α is the scale parameter and β, λ are the shape parameters. 
The reliability function )(tR , and the hazard (instantaneous failure rate) function )(tH  at mission time 

t for the modified exponential distribution are respectively given by 

( ) 1 e , 0, , , 0
tt eR t x

−β −λ−α= − ≥ α β λ >  (3)

and 
1( ) e( ) , 0, , , 0

1 e

t

t

t t e

t e

t tH t x
−β −λ

−β −λ

−β− −λ −α

−α

α β + λ ⋅
= ≥ α β λ >

−
. (4)

In Bayesian estimation, we consider two types of loss functions. The first is the squared error loss 
function (quadratic loss) which is classified as a symmetric function and associates equal importance to the 
losses for overestimation and underestimation of equal magnitude. The second is the LINEX (linear-
exponential) loss function which is asymmetric, that was introduced by Varian in [29]. These loss functions 
were widely used by several authors; among of them Basu and Ebrahimi in [5], Pandey in [16], Soliman in 
[27] and Nassar and Eissa in [15]. This function rises approximately exponentially on one side of zero and 
approximately linearly on the other side. 

Under the assumption that the minimal loss occurs at *φ=φ  the LINEX loss function for can be 
expressed as 

( ) e 1, 1cL c c∆∆ ∝ − ∆ − ≠ , (5)

where ( )*φ−φ=∆ , *φ  is an estimate of φ . The sign and magnitude of the shape parameter c represents the 
direction and degree of symmetry, respectively. (If 0>c , the overestimation is more serious than 
underestimation, and vice-versa.) For c close to zero, the LINEX loss is approximately s.e.l. and therefore 
almost symmetric. 

The posterior expectation of the LINEX loss function (6) is 

[ ]( )** *( ) e e 1c cE L E c Eφ − φ
φ φ φ   φ − φ ∝ − φ − φ −    , (6)

where )(⋅φE  denotes the posterior expectation with respect to the posterior density of φ . By a result of 

Zellner in [30], the (unique) Bayes estimator of φ , denoted by *
BLφ  under the LINEX loss function is the 

value *φ  which minimizes (6). It is 

{ }* 1 ln e c
BL E

c
− φ

φ  φ = −    (7)

provided that the expectation { }e cE − φ
φ     exists and is finite. The problem of choosing the value of the 

parameter c is discussed in Calabria and Pulcini in [6]. 

3. MAXIMUM LIKELIHOOD ESTIMATION (MLE) 

The joint density function of the first n upper record values ),,,( )()2()1( nLLL xxxx …≡  is given by 

1
( )

1,2, , (1) (2) ( ) ( ) ( ) (2) (1)
( )1

( )
( , , , ) ( ) , 0

( )

n
L i

n U U U n L n L n L L
U ii

f x
f x x x f x x x x

F x

−

=

= ≤ < < <∏… … … , (8)
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where )(xf , and )(xF  are given, respectively, by (1) and (2) after replacing x by )(iLx . The likelihood 
function based on the n lower record values x is given by 

( )
( ) ( )1

( ) ( )
1

( , , | ) e {( ) e }
xL n

L n L i
n

x e xn
L i L i

i

x x x
−λ−β−α −λ−β−

=

α β λ = α ⋅ β + λ∏A . (9)

Assuming that the shape parameters β and λ are known, the maximum likelihood estimator (MLE), 

MLα̂ of the scale parameter α can be shown by using (9) to be ( )
( )ˆ e L nx

ML L nnx λβα = . 
If only the shape parameter λ is known, the MLEs of the scale parameter α and the shape parameter β, 

MLα̂  and MLβ̂ , can be obtained as solutions of the equations 

( )

( )

( )

( ) ( ) ( )
( )1 1

e 0

1e ln ln 0

L n

L n

x
L n

n n
x

L n L n L i
L ii i

nx

x x x
x

λβ

−λ−β

= =

α − =


α − + = β + λ

∑ ∑
 (10)

which be solved using for example, Newton-Raphson iteration scheme.  

If 

)(
1

)(

1 )(

lnln

1

0

nL

n

i
iL

n

i iL

xnx

x

−
<λ<

∑

∑

=

=  then the maximum likelihood estimate of β, MLβ̂  is the (unique) 

solution of the equation in β obtained by eliminating α in (11). Then the maximum likelihood estimate of α 
is ( )ˆ

( )ˆ e L nML x
ML L nnx λβα = . 

If only the shape parameter β is known, the MLEs of the scale parameter α and the shape parameter λ, 
MLα̂  and MLλ̂ , can be obtained as solutions of the equations 

( )

( )

( )

( )1
( ) ( )

( )1 1

e 0

e 0

L n

L n

x
L n

n n
x L i

L n L i
L ii i

nx

x
x x

x

λβ

−λ−β+

= =

α − =


α − + = β + λ

∑ ∑
, (11)

which be solved using a iteration scheme. Then, if 

)(
1

)(

1
)(

0

nL

n

i
iL

n

i
iL

nxx

x

−
<β<

∑

∑

=

= , we obtain the MLE of λ, 

MLλ̂ , the (unique) solution of the equation in λ obtained by eliminating α in (11). Then the maximum 

likelihood estimate of α is ( )
ˆ

( )ˆ e ML L nx
ML L nnx λβα = . If the three parameters α, β and λ are unknown, using the 

first likelihood equation (of α), we obtain α, and, after replacing α in (9), we get 

( ) ( )∑∑∑
===

λ+β++β−⋅λ−−λ−β−=λβ
n

i
iL

n

i
iL

n

i
iLnLnL xxxnxnxnnnL

1
)(

1
)(

1
)()()( lnln1lnln),(~ . 

The Hessian of L~  is negative defined matrix and then L~  is a concave application on the admissible 
region (β > 0, λ > 0). Then, the Newton-Raphson algorithm converges to the global optimum, assuming that 
it does not go outside the admissible region. The Newton-Raphson algorithm requires initial parameter 
estimates. Different types of initialization are discussed in [25] and [31]. 

However, in this case we can use the likelihood equations for this L~ . After some transformations, we 
get 
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1lnln

1
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)()( =














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
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



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











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



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



−λ+
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== =
∑∑ ∑ nL

n

j
jL

n

i
nL

n

j
jLiL nxxxnxxn  

which, again, maybe solve using an iteration scheme. We note that this equation has a solution (unique) only 
if 

∑∑∑
===









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i
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1
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1
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1
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i
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i
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1
)()(

1
)(

1
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)(
lnln1  and 

)(
1

)()(
1

)(
1 )( lnln

1

nL
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i
iLnL
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i
iL

n

i iL xnxnxx
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x

−>







− ∑∑

∑
==

= . 

So first, we get MLλ̂ , the MLE of λ, and then MLβ̂  and MLα̂ , the MLEs of α and β 

)(
1

)(

)(
1

)(

lnln

ˆ
ˆ

nL

n

i
iL

nL

n

i
iLML

ML

xnx

nxxn

−









−λ−

=β

∑

∑

=

=  and ( )
ˆˆ

( )ˆ e ML L nML x
ML L nnx λβα = . 

Finally, the corresponding MLE’s )(ˆ tRML , and )(ˆ tH ML  of )(tR  and )(tH  are given by (3) and (4) 

after replacing α, β and λ by MLα̂ , MLβ̂  and MLλ̂ , respectively. 

4. BAYES ESTIMATION 

In this section, considering the symmetric (squared error) loss function and the asymmetric (LINEX) 
loss function, we estimate α, β and λ, and R(t) and H(t). 

4.1. Known shape parameters λ and β 

Under the assumption that the shape parameter λ is known, we assume a gamma γ( )a,b  conjugate 
prior for α as 

1

( ) , 0, , 0
Γ( )

a a bb e a b
a

− − αα
π α = α > >  

Applying Bayes theorem, we obtain from the likelihood function and the prior density, the posterior density 
of α in the form 

( ) ( )1
* e( | )

Γ( )

n a n a vvx
n a

+ + − −αα
π α =

+
 with ( )

( ) e L nx
L nv b x −λ−β= + ⋅  

where Γ(⋅) is gamma function. 
 
Theorem 1. If shape parameters λ and β are known, under the squared error loss function (BS) and 

the LINEX loss function (BL), the Bayes estimators for α, R(t) and H(t), are given by 
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4.2. Known shape parameter λ 

It is well known that, for Bayes estimators, the performance depends on the form of the prior 
distribution and the loss function assumed. Under the assumption that both parameters α and β are unknown, 
no analogous reduction via sufficiency is possible for the likelihood corresponding to a sample of records 
from the modified Weibull density (1). Also, specifying a general joint prior for α and β leads to 
computational complexities. In trying to solve this problem and simplify the Bayesian analysis, we use 
Soland's method. Soland [26] considered a family of joint prior distributions that places continuous 
distributions on the scale parameter and discrete distributions on the shape parameter. 

We assume that the shape parameter β is restricted to a finite number of values 1 2, ,..., kβ β β  with 

respective prior probabilities kηηη ,...,, 21  such that 10 ≤η≤ j  and 1
1

=η∑
=

k

j
j  [i.e. jjP η=β=β )( ]. 

Further, suppose that conditional upon jβ=β  there is a natural conjugate prior with distribution a gamma 

),( jj ba with density 

1e
( ) , 0, , 0

( )

j j ja a b
j

j j
j

b
a b

Γ a

− − αα
π α = α > > , 

where ja  and jb  are chosen so as to reflect prior beliefs on α given that jβ=β . Then given the set of the 

first n upper record values x, the conditional posterior pdf of α is given by 
1

* e
( | ,x) , 0, , 0

( )

j j jA A B
j

j j j
j

B
A B

Γ A

− − αα
π α β = β = α > > , 

which is a gamma ),( jj BA , where naA jj +=  and ( )
( )e

j L nx
j j L nB b x−β −λ= + . 

The marginal posterior probability distribution of jβ  obtained by applying the discrete version of 
Bayes' theorem, is given by 

( )( )
( )

1
( ) ( )

( ) ( ) ( )
0

( )
e d

( ) ( )

xj j jj L n
j L n

j

a n a a
b x ej j j j j j j

j A
j j j

b u b u A
P A A

a a B

−β −λ+ −∞
−α +β β

β β β

η α η Γ
= α =

Γ Γ∫ , 

where )(βA  is a normalized constant given by  
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Under the general the symmetric (squared error) loss function (5) and the asymmetric (LINEX) loss 
function (6), the Bayes estimator of *

BLφ  a function ),( baφ  is given by (7). 
 

Theorem 2. If the shape parameter λ is known, under the squared error loss function (BS) and the 
LINEX loss function (BL), the Bayes estimators for α, β, R(t) and H(t) are given by 
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The case of known shape parameter β is similar with the case of known shape parameter λ. 

4.3. Unknown scale parameter α and shape parameters β and λ 

We assume that the shape parameters β and λ are restricted to a finite number of values kβββ ,...,, 21  
and respective pλλλ ,...,, 21  with prior probabilities kηηη ,...,, 21  and pξξξ ,...,, 21  such that 1,0 ≤ξη≤ ij , 

1
1

=η∑
=

k

j
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=

p

i
i  (i.e. jjP η=β=β )(  and iiP ξ=λ=λ )( ). Further, suppose that conditional 

upon jβ=β  and iλ=λ  there is a natural conjugate prior with distribution a gamma ),( ijij hg with density 

1e
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ij ij ijg g h
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h
g h

Γ g

− − αα
π α = α > > , 

where ijg  and ijh  are chosen so as to reflect prior beliefs on α given that jβ=β  and iλ=λ , pi ,1= , 

kj ,1= . Then given the set of the first n upper record values x, the conditional posterior pdf of α is given by 
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which is a gamma ),( ijij HG , where ngG ijij +=  and ( )
( )e
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The marginal posterior probability distribution of jβ  and iλ  obtained by applying the discrete version 
of Bayes' theorem, is given by 
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Theorem 3. If all parameters are unknown, under the squared error loss function (BS) and the LINEX 

loss function (BL), the Bayes estimators for α, β, λ, R(t) and H(t) are given by 
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  β + λ Γ ++ − −  = −   Γ    + +   
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