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The parallel manipulator is a mobile mechanic structure, having one or more levels, with closed 
kinematical chains, which are driven by actuators. The parallel manipulator is a complex topological 
structure, having the joints (as kinematical pairs) of various types. The most frequently utilized joints 
are: the mono-mobile kinematical pairs (revolute (R) or prismatic), the bi-mobile cylindrical pairs (C) 
and tri-mobile spherical pairs (S). The paper presents a new way for the structural - topological 
analysis (with referring to the calculation of mobility) and a new method for the direct kinematics of 
parallel manipulators with four actuators, RSS (Revolute – Spherical – Spherical pairs) type. 
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1. INTRODUCTION 

The paper presents a new way of the topological geometry for the Parallel Manipulators (PMp) 
regarding the calculation of mobility (degree of freedom (d.o.f.) of complex mechanisms. The parallel 
manipulators are multi-mobile planar or spatial mechanisms with two to six kinematical chains, which 
connect two rigid bodies, generically named platforms. Mobility or d.o.f. is the main structural – topological 
parameter of a mechanism and manipulator-robot; this influences the kinematical and dynamic modeling of 
mobile mechanical systems [1, 2, 5].  

The kinematical chains mounted in parallel between two platforms are composed of two or more 
kinematical elements, these being realized as open chains or as complex chains with closed and open 
contours [6]. Gough’s machine (1947) and the Stewart’s platform (1965) are structured as spatial 
mechanisms with six identical kinematical chains (KC) [12].  

These mobile platforms constitute the first structural-topological model, from which subsequent 
research was started. They are named parallel manipulator (PMp). The PMp-s can be connected in series, 
obtaining overlapping PMp-s, similar to the structural-topological of serial elephant trunk-type robots. 

Unlike the serial manipulators, to PMp-s, practically all types of kinematical pairs are used [1, 10], that 
allows a larger diversity of kinematical structures.  

In the last period, since 1990, the attention of more researches [8, 10, 11, 14, 16] targeted the potential 
possibilities of PMp-s. The results of numerous studies [6] show that the concept of the parallel manipulator 
has been generalized and can be used as a model of geometrical and kinematical analysis and synthesis in 
various domains, from the simulation platforms (in the aeronautic and automotive industries) and drilling 
petroleum platforms, to industrial robots and walking robots. Defining PMp, J. P. Merlet [12], compares 
them with a terminal organ with n degrees of freedom and a fixed base, linked together by at least two 
independent kinematical chains, which are actuated by n simple actuators.    

One of the most important activities in the design and development of parallel robots is the creation of 
new manipulator type [14]. The forward geometrics and kinematics of parallel robots consists in determining 
the position and the orientation of the platform when the joints variables are known [15]. G. Gogu [9] makes 
a critical review on the mobility calculation for mechanisms/manipulators, and presents a critical analysis of 
various methods existing in the literature in the last 150 years. 
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2. SPATIAL PARALLEL MANIPULATOR (SPMP) WITH 4 ACTUATORS, RSS TYPE 

2.1. Mobility calculation 

For this type of parallel manipulator (Fig.1a), the mobile platform is linked to the fixed platform 
through four actuators. Each actuator has a motor kinematical chain AiBiCi (with elements 1 and 2), with RSS 
(Revolute – Spherical – Spherical pairs) structure. The platforms are linked by a central kinematical chain 
OP with a single element 1*, having one cylindrical (C) joint and one spherical (S) joint (Fig.1b). The fixed 
axes can be situated on any four sides from the fixed pentagon (Fig.1a) or can be situated on the sides of a 
square (Fig.1c). 

The mobility (Fig.1a) is calculated with general formula [1]: 
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In formula (1), it was noted: Nr - the number of closed contours, with the r rank; Cm - the number of the 
joints of functional class )]1(,1[ −∈ rm ).  

For the parallel manipulator presented in Fig.1a, c: m=1 is the mobility of the Ai joints; m=2 is the 
mobility of O joint; m=3 is the mobility of Bi, Ci and P joints; Cm is the number of kinematical joints with m 
mobility: C1=4, C2=1,C3=9; r=6 is the rank of associated space, for a independent closed contour; Nr=4 is 
the number of independent closed contours. 

By replacing these values in (1), results: (1 4 2 1 3 9) 6 4 9M = × + × + × − × = . 
From the nine mobility degree, four are active mobility’s (by the four actuators) and five mobility’s are 

passive (independent rotations of the four bars 2 and of the vertical rod 1*). 
 

                      

                                        a)             b)         c) 

Fig. 1 – Kinematic schema of SPMp with four legs, RSS type. 

2.2. Direct kinematics 

The direct kinematics requires the knowledge of bars 1 positions (Fig.1a), given by φi (i=1, 2, 3, 4). 
The Ai (i=1, 2, 3, 4) coordinates can be obtained in function of the circumscribed circle radius R of the 
regular fixed pentagon (Fig.1a): 
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The coordinates of mobile points Bi (i = 1, 2, 3, 4) are expressed in function of Ai (i = 1, 2, 3, 4) 
coordinates, AiBi=l1 and φi (i = 1, 2, 3, 4). 
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Thus, in the first case (Fig.1a): 

;cos36cos 11
0

1
ϕ−= lRxB ;72cos)cos36cos( 0

21
0

2
ϕ−= lRxB

;144cos)cos36cos( 0
31

0
3

ϕ−= lRxB ;144cos)cos36cos( 0
41

0
4

ϕ−= lRxB  (2) 

;0
1
=By ;72sin)cos36cos( 0

21
0

2
ϕ−= lRyB ;144sin)cos36cos( 0

31
0

3
ϕ−= lRyB

;144sin)cos36cos( 0
41

0
4

ϕ−−= lRyB  
(3) 

;sin 111
ϕ= lzB ;sin 212

ϕ= lzB ;sin 313
ϕ= lzB  ;sin 414

ϕ= lzB  (4) 

In the second case, presented in Fig.1c, the Ai (i = 1, 2, 3, 4) coordinates are expressed in function of 
the radius of the square circumscribed circle: 
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In this case, the Cartesian coordinates Bi (i = 1, 2, 3, 4) are: 
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     The sphere equations with Bi (i=1, 2, 3, 4) centers and BiCi=l2 radius is: 
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where the Bi (i=1, 2, 3, 4) coordinates are given by (2/2'), (3/3’) and (4/4'). 
The distances between C1, C2, C3 and C4 (the vertices of the pentagon platform p) are known constant 

lengths: 
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These constrains are given by four scalar equations: 
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Because the pentagon platform p is rigid, the diagonals of quadrilateral C1C2C3C4 are constant: 
1 3 13C C l= . This means: 
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Considering the triangle formed by the last three vertices C2C3C4 of the mobile platform p, another 
equation results from condition that C1 to be included in C2C3C4 plane: 
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The fifth kinematical chain OP, with CS structure, which links the two platforms (Fig.1b), introduces 
the restriction that P has to be situated on the vertical axis Oz0: 

0=Px ,   0=Py . (15, 16) 

P is the quadrilateral C1C2C3C4 center, meaning: 
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Thus, the equations (5, 6, ..., 14, 15', 16') form a system of 12 scalar equations with 12 parameters (the 
C1, C2, C3, C4 Cartesian coordinates). 

The 12 equations were solved for the case presented in Fig.1c, for the following values: φ1= 1200,  
φ2 = 1100, φ3 = 1000, φ4 = 1150, R = 20, l1=20. We need the Ci points to be the square vertices, which has the 
circumscribed circle radius of 40 units. Therefore, the square lengths of the mobile platform must be: 
l12=l23=l34= l41=20 2 and l13=40 units. 

First, we determined the Bi values, using the following syntax in Mathematica: 
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We obtained the following values: 

 
Second, we built the first equation, using the syntax: 

 
We obtained:  

 
Similarly, we built all the 12 equations. 
The syntax for solving the equations system is: 

 
We obtained the solution: 

 
For any start values in iteration, we obtained the same solution.  
This solution is verified with the following syntax: 
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We obtained for the equations left side, the following numerical results: 

 
It is observed that the solution verifies the equations system. 
The graphical representation of the obtained solution is shown below (Fig. 2): 
 

 
Fig. 2 – Graphical representation of the obtained solution for SPMp, with four legs, RSS type. 



 Viviana Filip, Ovidiu Antonescu 7 194 

3. CONCLUSIONS 

The specialized software allows a quick solving of the PMp direct kinematics, without making 
guesses or matches. It offers precise solutions, easily to be verified on the virtual model made by means of 
SolidWorks. This 3D PMp model can be kinematically simulated in order to find the right adjustments that 
are needed in the design process. The main purpose of this paper was the use of specialized software to 
obtain the right design solution. 
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