
      THE PUBLISHING HOUSE  PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A,   
      OF THE ROMANIAN ACADEMY                          Volume 11, Number 2/2010, pp. 137–141 

DYNAMIC MODELING OF FERRITE NANOPARTICLE SYSTEMS IN 
RADIOFREQUENCY MAGNETIC FIELDS 

Mihaela OSACI  

Technical University of Timişoara, Hunedoara Engineering Faculty, 5 Revoluţiei Street, Hunedoara, 2750, Romania 
Fax: 0040-254207501, E-mail: osaci.mihaela@fih.upt.ro 

Today the most studied magnetic materials are the magnetic materials based on the nanoparticles in 
solid or liquid matrix. The knowledge of the ferrite nanoparticles in high frequency magnetic fields 
insures the possibility to know the behavior of the magnetic materials based on nanoparticles. The 
nanocomposites based on ferrite nanoparticles and polymer dielectric matrix can replace successfully 
the usual high frequency ferrites. This work proposes a study by simulation of the ferrite 
nanoparticles behavior in high frequency magnetic fields. 
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1. INTRODUCTION 

The scientific and technological importance of nanometric particles magnetic disperse systems is 
justified by the possibility to achieve some advanced magnetic materials, from natural nano-structures, to 
artificial nanostructures: ferrofluids, high-density magnetic registration environments, magnetic sensors, hard 
& soft magnetic nano-composites used as electro-technical materials at usual frequencies and high 
frequency… The magnetic relaxation processes in nanoparticle systems have a decisive role in the new 
magnetic materials behavior based on nanoparticles in dinamic magnetic fields, aiming to use them in radio-
frequency and microwaves instead of usual materials.  

Due to the complexity of the problem, treating irregular arranging of particles in systems with 
competing dipolar magnetic interactions in thermal equilibrium and nonequilibrium, we are forced to use 
stochastic simulation method of magnetic relaxation time, since present analytical methods can not cope 
equivalently with such systems. The stochastic simulation method is widely applied in statistical physics, 
since it is a powerful tool for the (in principle) exact numerical calculation of thermodynamic properties of 
interacting many-particle systems.  

We propose a simulation model of the magnetic relaxation process for ferrite nanoparticles systems 
which lead to a medium relaxation time determination, then, using the Debye’s theory [1] can be obtained 
the frequency dependence of the components’ complex magnetic susceptibilities, according to relations: 
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where χ(0) represents the measured value of magnetic susceptibility at low frequency or in static regime, χ∞ 
is the measured magnetic susceptibility at high frequency, ω is the angular frequency and τ is the magnetic 
relaxation time. 

Depending on the magnetic material type for which the nanoparticles are the base constituent: 
ferrofluid in which the nanoparticles are clustered in the particle chain, layer or nanocomposite with solid 
dielectric matrix, than the simulation model of the magnetic relaxation process in ferrite nanoparticles system 
can used one-dimensional, bi-dimensional and three dimensional simulation model.  
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In the case of an ensemble of many-ultrafine particles, when analyzing the magnetization and 
demagnetization, it is very important to consider the dipolar magnetic interaction between particles. When 
this interaction is included, the problem becomes very complex and, until now, there is not exactly known an 
analytic solution [2]. For the medium relaxation time determination we use the three dimensional simulation 
stochastic model [3]. In this model we consider a distribution of the nanoparticles dimensions. We take into 
account of the dipolar magnetic interaction between nanoparticles [5, 6]. 

We consider that the nanoparticle system is situated in an external magnetic field. The study of the 
behavior of the nanoparticle system starts when the action of the external magnetic field ends (t = 0) and 
when the magnetic moments are parallel with their anisotropy axis and with the direction of the magnetic 
field. For every nanoparticle of the system of which position is generated. It is given ijr  the positional 
vectors that unite the centre of the nanoparticle i with the centers of the nanoparticles neighbours j. The rij 
size of these vectors which represent the distances between nanoparticle i and  neighbor nanoparticle j, for a 
random display of nanoparticles in the 3D volume, are generated by the transforming Box Mueller [7]: 

 [ ]ln( and1) cos(2 and2) sin(2 and2) .ijk ijkmed ijkr r r r r= + σ − ⋅ π + π  (3) 

In eq. (3) σijk is the distribution variance of distances between nanoparticles and k being the order of the 
nearest neighbors for a given particle i. For simplicity, we express the distribution variance of distances as:   

 σijk=rijkmed⋅vr ,  (4) 

where vr is variance parameter and rijkmed is the rijk mean value.  
Then it can be simulated the energy barriers, the probability of the nanoparticle to pass from a stabile 

state to another stabile state, then their relaxation time. 

2. STUDY OF THE FERRITE NANOPARTICLES’ BEHAVIOR IN HIGH FREQUENCY 
MAGNETIC FIELDS 

The simulations were performed on a system with spherical fine particles of magnetite with uniaxial 
anisotropy, anisotropy constant K = 19,000 J/m3, spontaneous magnetization Ms = 4.7⋅105 A/m, of which 
most probable value of the particle diameter 9.848 nmmd = . The particle’s first order neighbors for i-th 
particle, for very high density systems, are the neighbors that are placed at one diameter distance from the 
central point of the i-th particle (Fig. 1). Using the volume fraction definition, if we note with: 
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the volume fraction of particles, for a high-density (tangent particles one with another) system we can write  
[8] by Garcia relation:      
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Using (5), (6) and (7) we obtain the number of k order neighbors by using the following relation: 
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Fig. 1 – Orders of the nearest neighbors for very high-density systems. 

I ord.  II ord. 
III ord. 
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For the diluted systems, we keep the number of neighbors of I, II and III order and we use a parameter 
D – distance between two particles one next to another (not between their central points), which is bigger as 
the system is more diluted (Fig. 2). 

 
 
 
 
 

Fig. 2 – The first order of the nearest neighbors for a diluted system. 

In the first approximation we considered that the particles are of the same diameter and the temperature 
of system is 300 K. 

We simulated the nano-particle arrangement from the first two neighbourhood ranks, for different 
values of the nano-particle concentration and for different values of the distribution variance of distances 
between nano-particles σijk. In Fig.3 are simulated the disposals of the 14 nano-particles of rank I around a 
given nano-particle, for different values of the distance variance parameter vr. 

     
                                                                                   vr=0.2                            vr=0.4 

Fig. 3 – Disposal of rank I nano-particles into a sample with concentration of  9.9⋅1023 part/m3,  
for different values of the distance variance parameter vr. 

These calculations, using the eq. (1) and (2) are performed under the hypothesis of weak or strong 
dipolar interaction. In the weak interaction case, which corresponds to a concentration of the particles of 
2.24⋅1023 part/m3, the distance between the i-th particle and the nearest neighbors is md2 , md4 to the next 
nearest neighbors, and md6 to the third order particles. For a strong interaction, which corresponds to a 
concentration of the particles of 1.16⋅1024 part/m3 the distance between the i-th particle and the nearest 
neighbors is md , md2 , and md3 respectively. The frequency dependence of the complex magnetic 
susceptibility components is seeing in Figs. 4-5. 

 

 
Fig. 4 – The frequency dependence of the real magnetic susceptibility at 293 K (spherical particles with identical volume): 

1) – without interaction, 2) – with interaction, 3) – very strong interaction. 
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Now, we consider that particle dimensions have a lognormal distribution. For the generation of random 
values of particle diameters, we used the algorithm presented in [4, 6]. The method of generating a 
lognormal distribution is based on the relation: 

 ln 0lne d iu d
id σ ⋅ +=   (9) 

In eq. (9) ui are the values of a normal distribution on (0,1), with the mean equal to ln d0 and the variance 
equal 2

ln dσ . 
 

 
Fig. 5 – The frequency dependence of the imaginary magnetic susceptibility at 293 K (spherical particles with identical volume):  

1) – without interaction, 2) – with interaction, 3) – very strong interaction.- 

In eq. (9) we have considered that the mean of the distribution is 0ln –18.4409 d =  and the variance is 

( )05.00025.0 ln
2
ln =σ=σ dd . The most probable value of the particle diameter 9.848 nmmd = corresponds to 

a volume of 25105 −⋅ m3. 
In the simulation algorithm, we first generate the random variables, which are used in the model, and 

then we computed the energy barriers of each particle and relatation time. Finally, from eqs. (1) and (2) the 
frequency dependence of the complex magnetic susceptibility components – see in Figs. 6 and 7. 

 

 
Fig. 6 – The frequency dependence of the real magnetic susceptibility at 293 K (spherical particles with lognormal volume 

distribution (with the variance 0.0025): 1) – without interaction, 2) – with interaction, 3) – very strong interaction. 
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Fig. 7 – The frequency dependence of the imaginary magnetic susceptibility at 293 K (spherical particles with lognormal volume 

distribution (with the variance 0.0025): 1) – without interaction, 2) – with interaction, 3) – very strong interaction. 

3. CONCLUSIONS 

With the increasing interest in realising new magnetic materials, the magnetic behaviour of the 
nanoparticles disperse systems became an important problem either from the experimental point of view or 
from the theoretical one. 

In this paper it has been carried out a simulation to determine the dependence of the complex magnetic 
susceptibilities components for a fine particles system on frequency based on the three-dimensional model 
for relaxation process [3], similar to real situation. In this model it has been considered that the particles are 
randomly arranged in a volume. Considering the dipolar magnetic interaction between particles it can be 
observed an influence for the dependence between complex magnetic susceptibilities components and the 
frequency.  

For a weak interaction (concentration = 2.24⋅1023 part/m3) it results a removal of the maximum 
imaginary component of the complex susceptibility to a high frequency. For a very strong interaction, the 
maximum imaginary component of the complex susceptibility moves to a low frequency. 

These conclusions are in accordance with the majority experimental data for nanoparticles systems  
[9, 10].  
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