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Vehicles which operate more or less autonomously are considered belonging to the robot’s family. 
The legged vehicles have the potential advantage to be able to operate over irregular terrain. The 
planning and control of these robots is considered hierarchically organized on two levels. At the high 
level, the robot is piloted in the task world. At the local level – operative level – the locomotion 
function is performed. In this paper, walking orthogonal hexapods, for moving along uneven terrain 
are the object of study. By kinematic analysis the direct and inverse geometrical models and a 
differential model are developed. The accommodation to terrain using force sensing is approached 
too. This approach is useful to write the control algorithms of the analyzed robots or of other 
structures by analogy. 
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1. INTRODUCTION 

Vehicles which operate more or less autonomously are considered as belonging to the robot’s family. 
Betwixt these, the legged vehicles have the potential advantage to be able to operate over irregular terrain. 
Walking robots (WR), in comparison with industrial robots which are dextrous arms (6 or more D.O.F.) able 
to ensure the precise positioning of the end-effector, comprise a body and legs, each kinematic chains with 
no more than 3 D.O.F. which support the body and ensure the gait, the locomotion mechanism. Terrain – 
adaptive walkers have the ability to individually place their feet at desired position on the terrain [1, 2]. The 
legs can be in supporting state when the legs are in contact with the ground, and the body is moving or not, 
with respect to the footholds, or in stepping or transfer state when the leg is detached and has a relative 
movement to the robot’s body, somehow looking for a place for the new foothold [3, 9, 10]. 

 

 
Fig. 1 – Walking vehicle with weaving gait. 

With orthogonal walking robots, the body movement is carried out in a plane with a group of actuators, 
and the vertical movement is performed by another group of actuators [6]. The three-degree-of-freedom 
orthogonal legs decouple horizontal and vertical motion, leading to simplified planning and control. The legs 
are kinematic chains with driving (propulsive) joints revolute (R) or prismatic (T), RTT or RRT, with the 
supporting element pedestal with prismatic joint; the supporting element is always vertical to the foothold [4, 
8]. In this paper two orthogonal-legged walker configurations are tackled. The first is termed a weaving 
walker (Fig. 1) because recovering legs thread through supporting legs. 
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Fig. 2 – Walking robot with circular gait. 

The second is termed a circulating walker, because its legs continuously rotate with respect to the body 
during the course (Fig. 2) of walking. Both have the feature that legs are recovered from rear to place ahead 
of supporting legs. The legs are arranged in a single stack or in two stacks respectively. The Ambles rover is 
an example of such a six-legged robot with circulating gait. 

2. AN APPROACH OF PLANNING AND CONTROL OF WALKING ROBOTS. 

The planning and control of these robots may be hierarchically organized on two levels. A highest level 
on which the robot is piloted in the task world, along a prescribed trajectory defined in an inertial frame of 
this world and avoiding unforeseen obstacles based on sensory information and a local one on which the 
locomotion function is performed [5, 8]. At the highest level the position and orientation of the robot can be 
piecewise generated at each step, following the imposed trajectory and/or avoiding the unpredictable 
obstacles perceived by sensors [5, 7]. 

The piecewise movement of the body may be related to the gait cycle. During the body displacement 
its characteristic point M, placed in the center of gravity and the origin of a mobile frame suitably attached is 
considered. For the trajectory generation let’s consider an inertial frame O attached to the robot’s task world 
and the mobile frame in M (Fig. 3). A homogenous transformation H defines the position and orientation 
(PO) of the robot in the frame O. The piecewise displacement provides the displacement of the point M from 
a point denoted M0 along the approximated trajectory. 

 

 
Fig. 3 – The fixed frame and the piecewise displacement. 

We start from the premise that the position and orientation of the robot, in the fixed frame are known. 
For a prescribed trajectory, the intermediate position corresponding to the elementary displacement are 
generated, with a sampling τ period. Period τ is conditioned by the prescribed velocity vt=ds/dt, on the 
curvilinear abscissa, so that the displacement of the body characteristic point M to be according to the step 
length. Two kinds of approximation of trajectory are considered by straight line or by circular arc. If the 
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piece of trajectory is approximated by a straight line segment, the body will move from a point M0 to a point 
M1. If the piece of trajectory is approximated by a circular arc, the destination is a point M2, passing through 
a point M1. Along such a segment, in the frame located in M0, the position references for the intermediate 
instant points M will be generated with a sampling period T<<τ. The homogenous matrix H describe the 
position and orientation in a point M(X, Y, Z): 
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–sin –cos 0

0 0 –1
0 0 0 1

X
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where ϕ is the orientation angle. Let’s consider an elementary displacement on the straight line segment 
M0M1. If the homogenous transformation matrix T0 describes the PO in M0 and T1 the PO in M1, as in Fig. 4, 
the transformation P determines the PO in M1 viewed from M0, P = T0

-1T1. 
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Fig. 4 – The graph of homogeneous transformation for an elementary displacement on a straight line. 

If the matrix P is of the form: 
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px, py are coordinates of the point M1 in the Moxy plane and the orientation variation (if any) β=∆ϕ=ϕ1–ϕ0 is 
given by: 
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Fig. 5 – Elementary displacement on a circular arc. 

The intermediate references can be generated by period T. For an elementary displacement on a 
circular arc, the circle center C(xc, yc) in the frame M0 (Fig. 5) and two points are considered, M1 an 
intermediate one and M2 at the end of the arc. The relation between these points direct to obtain the 
coordinates of the circle center xc, yc and its radius R. For the circular arc generation with a parameter ψ, in 
the range [0, ψM], ψM must be formed. By solving the triangle CM0M2 (Fig. 5), one obtains the chord lo2 and 
the angle ψM. 
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Given the tangential velocity vt=ds/dt, using finite differences, one gets: 

t
Tv
R

∆ψ = , (5)

which is the step of the parameter for the circular arc generation. The generated position references are: 

1 – cos sinx R y R= ± ψ = Ψ( ),     , (6)

where the sign is dependent on the variation of angle ψ (clockwise or counter clockwise). When the end of a 
segment is reached (M1 or M2), this becomes M0 for the next elementary segment.  

3.  THE LOCOMOTION FUNCTION 

Being established a method for generating the position of the robot body in the local Cartesian frame, 
some control equations must be written in terms of joint control variables to obtain the derived movement. 
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y'
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∗
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Fig. 6 – Reference systems. 

For an elementary displacement M0M, the scheme shown in Fig. 6, is considered where: 
• M0 is the origin of the reference frame for a segment M0M; 
• M is the origin of the mobile frame in the instant point; 
• ρs the position vector of the foothold A, in the frame M;  
• β  the variation of orientation angle; 
• ϕ*

A the new orientation angle in M. 
The locomotion function for a weaving walker. For this purpose it is convenient to take two legs as 

basic, determining a penthalater planar loop, the propulsive mechanism. The kinematic propulsive chain is 
different if the legs are RRTR or RTTR chains. The propulsive mechanism for a chain RRRRR is shown in 
Fig. 7. The position of the point M is univocally determined by two active joints convenient chosen.  

The body being fixed on the axis in M, for the orientation control, this must be active connected to an 
element (MA′ or MB′). The direct geometric model for RRRRR chain (Fig. 7) is:  

1 2 1 2

1 2 1 2

cos cos( )  ;    sin sin( ),

cos cos( )   ;    sin sin( ),

ρ = ϕ − ϕ + θ ρ = − ϕ + ϕ + θ

ρ = ϕ − ϕ + θ ρ = ϕ − ϕ + θ
Ax A A A Ay A A A

Bx B B B By B B B

l l l l

l l l l  (7)

where:   

Ax Ax xρ = − ;      Bx Bx xρ = − ; Ay Ay yρ = − ;     By By yρ = −  (8)
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Fig. 7 – The propulsive mechanism chain, type RRRRR. 

Angles θA, θB and ϕ being known the position of footholds with respect to the frame attached to the 
body are expressed in equations (7) and (8). On the beginning of an elementary displacement the point M is 
in M0. For an incremental displacement in the place M(x,y) angles θA, θB and ϕ can be obtained from the 
inverse geometric model: 

2 2 2
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1 2

( ) sincos   ;  sin 1 cos   ;  tg
2 cos

−+ − ρ θ
θ = θ = + − θ θ =

θ
A A

A A A A
A

l l
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,        (9)

where θ ∈ (0, π) and ρ2=(xA–x)2+(yA–y)2. The same is applicable for θB. To get the desired orientation the 
angle between the axis Mx′ and one of the contiguous element (MA′ or MB′) must be controlled. For the 
taken configuration in Fig. 7, the angle ϕA: 
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and 

,A A
∗ϕ = ϕ + β  (12)

if a variation of orientation β exists. The differential of position equations provides the necessary elements 
for building the inverse Jacobean matrix. This is useful in the incremental position control and in the case of 
velocity control. The kinematic differential model is: 
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in which: 
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where: 
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for ϕA: θ = θA, and: 
2 2 2ρ = ρ + ρx y ,   (18)

where ρAx, ρAy and ρBx, ρBy, are given by equation (8). 
When the chain MA′A and MB′B comprise prismatic joints in A′ and B′ (Fig. 8): 
 

A

A'

y

x'

ϕ Bϕ A

ρ A

B'

B

M (x, y)
ρ B

 
Fig. 8 – Kinematic propulsive chain, type RTRTR. 

the direct geometric model is expressed by equations: 
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(19)

The inverse geometric model is: 

2 2 ,  ATAN2 ,  ATAN2 .Ay By
x y A B

Ax Bx

−ρ ρ
ρ = ρ + ρ ϕ = ϕ =

ρ ρ
        (20)

The locomotion function for a circulating walker. The plane kinematic chain of propulsive 
mechanism may be considered with six elements and three actuated joints which ensure the position and 
orientation of the body. The legs configuration, the same as in the previous case, involves a similar solution. 
Dependent upon what is the intermediate joint of a leg, revolute or prismatic (like in Fig. 2), for the direct 
and inverse geometric model, the equations (7, 9, 11, 19, 20) can be used with some adaptations. The control 
of such walkers is more simplified. 

4.  THE USE OF FORCE SENSORS FOR FITTING THE FEET TO TERRAIN 

The force control is a part of the general control algorithm for walking over irregular terrain. The 
concept of active compliance is used to accommodate the legs to terrain variations [9]. The commanded 
vertical component of velocity may be given by 
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       ( ) ( )= + − + −c d p d c f d cz z k z z k f f  (21)

where iz is the desired velocity; dz  and cz are the desired and actual positions; fd and fc are the desired and 
actual measured forces; kp and kf are gains. The real algorithm is a control with variable structure. The 
position zd and velocity dz  are provided by feet trajectory planning and are modified by the attitude control 
of robot’s body. The desired force fd is obtained from force-setpoint calculation by a method given below. 
The measured force on the feet must be predicted. 

If the robot’s coordinate system is chosen so that the center of mass is the origin, the vertical forces on 
feet in support should satisfy 

; 0; 0.i i i i if G f x f y= = =∑ ∑ ∑  (22)

In the case of the robot taken in study, 5 or 4 feet are in support phase and the problem in statically 
indeterminate. The problem can be solved imposing the condition of minimum deformation energy. The 
pseudo inverse solution for force with the minimum norm, can be analytically calculated. Klein, Olson and 
Pugh, prove that the pseudo inverse solution for commanded forces changes linearly with robot motion with 
respect to a given set of feet in the ground. For a given leg stance the calculated force solution will have the 
form:  

0( , ) ,c a a c a cx a cyf x y f x f y f= + +  (23)

where fc0 is the solution for force in the initial position; xa, ya are the translation of the body with respect to 
the supporting feet; fcx and fcy are constant forces for a given stance, and fc(xa, ya) is the force solution when 
the body has moved since the beginning of the stance. The equation (23), can be written as: 

0  
0
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 
 =  
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, (24)
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y

 
 =  
  

 and f is the vector of vertical forces for the supporting feet, G is the vehicle 

weight and x, y are the feet coordinates in the chosen frame. 
For solving by a generalized inverse method of f, this must be entirely in the row space of A. One of the 

well known generalized inverse is the pseudo inverse (Moore Penrose) which is defined thus: 

( ) 1T TA A AA
−+ = . (25)

A more simplified form may be applied using AT as pseudo inverse. This can be written as:  

T

a
f A b

c

 
 =  
  

,  (26)

valid for some values of a, b and c. Substituting (28) into (25) we get 

T 0
0

a G
AA b

c

   
   =   
      

 (27)

and solving  the linear system (29) the values of a, b and c are given. The force can be written as 



 Sergiu B. Cononovici, Adrian Curaj 8 

 

82 

     = + +f a bx cy    (28)

and has 5 components in accordance with the number of the five considered supporting legs. 

5.  CONCLUSIONS 

In this tackling of orthogonal walkers, some elements useful for their operative system building, are 
developed. 

Starting from the premise that the position and orientation of the robot are given by the highest level of 
control, the navigation system, at the operative level the locomotion function is executed. This carry out the 
propulsion of the body, with respect to supporting legs and the stepping of the legs in transfer phase. 

The algorithms take particular forms depending upon the configuration of the walker. The gait quality 
is improved if the control is assisted by sensors (force, attitude), providing accommodation to the 
unpredicted elements of the terrain. The force sensing was approached to conform the feet to terrain.  
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