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In this paper, we analyze the stick-slip motion in systems of confined liquids. The model consists in a 
periodically reinforced chain of harmonic oscillators with strong buckling nonlinearity, embedded 
between two corrugated plates. The top plate is pulled at constant velocity by a linear spring. The 
time-dependent relaxation of the slip part between two successive stick events is studied on the range 
of high stage velocities. We see that the buckling nonlinearity may coexists with different patterns of 
dynamics, including chaos, and leads to the observed experimental behavior and to predictions that 
are amenable to experimental tests. 
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1. INTRODUCTION 

Interfacial friction is one of the oldest problems in science and certainly one of the most important 
from a practical point of view [1–7]. Experimentally, it has been observed that, under overdamped 
conditions, slip relaxation manifests more than one characteristic time scale [8]. Various studies have 
suggested that the details of the relaxation depend on the experimental conditions and have related the stick-
slip behavior to a dynamical phase transition or to a velocity-dependent frictional force [9–11]. Historically, 
the exploitation of friction has a significant effect on the machine and structures development [12, 13]. 

An interesting model was suggested by Rozman et al. [14–17]. A single or a string of particles (a 
molecular system) are embedded between two corrugated surfaces (two-wave potential). The top plate is 
pulled at constant velocity by a linear spring and the plate motion is monitored. It was observed that the plate 
exhibits exactly the same dynamic state of frictional motion as the model with the three regimes, i.e. (1) 
highly regular with high amplitude stick-slip for cV V , (2) intermittent stochastic stick-slip for cV V< , and 
(3) smooth low friction sliding for cV V> , where cV  is the critical stick-slip velocity. The Rozman works are 
focused only on the range of low stage velocities, where the motion is close to periodic. 

In this paper, we use the Rozman’s idea of embedding a molecular system of particles between two 
corrugated macroscopic plates. The molecular system consists of harmonic oscillators coupled through 
buckling sensitive elastica. We concentrate on the stick-slip regime typical of high driving stage velocities, 
and analyze a time window which corresponds to slip motion between two stick events. This slip relaxation 
behavior depends on the conditions under which the stick-slip motion is being studied.  

We consider the overdamped case, where the spring constant is weak compared to the friction constant 
and the characteristic slip time is much longer than the response time of the mechanical system 

2 /M K≈ π . 

2. MICROSCOPIC MODEL 

We consider a system experimentally studied in [18], namely a periodically reinforced structure with 
strong buckling nonlinearity, consisted of N  harmonic oscillators. The system is modeled by a modified 
Toda lattice [19–23]. The lattice model is shown in Fig.1. The masses are denoted by m , all the spring 
constants are mk , and all the damping coefficients are mc . 
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Fig. 1 – Nonlinear lattice model. 

The equations of motion of the lattice are 
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where the potential ( )i jU x x−  describes the spatial interaction between buckling elements in the chain, and 

the operator L  associated with the slow motion is defined as 

i m i m iL mx c x k x= + + , 

with boundary conditions of zero displacement of the fixed end and zero force on the free end 

0 0x = , 1N Nx x+ = .  (2)

The potential ( )i jU x x− is the same as that used by Toda to model the nonlinear force-displacement 

relationship for the buckling elements. The force F  which results from this potential is given by  

( ) [exp( ( )) 1]m
i j i j

kF x x b x x
b

− = − − , (3)

where b  determines the strength of the nonlinearity. For the atoms interaction in a lattice, the Morse 
interaction force is valid in quantum mechanics of an electron motion, 0α  being a constant 

0 0 0( ) [exp( 2 ( )) 2exp( ( ))]i j i j i jF x x F x x x x− = − α − − −α − . 

Morse force of interaction governs precisely the nearest-neighbor interaction in an anharmonic lattice 
of the atoms in a diatomic molecule of solids in a continuum limit. But, no exact solutions are found for 
elasticity problems governed by Morse force. For Toda interaction force there are some exact explicit 
solutions for the model. Equations (1) and (3) reduce to a Toda lattice, and the functional form of the 
nonlinear soliton solution is given by 

2
21 ln sech ( ( ) ) 1i j i j

ch

x x k x x t
b

  β − = − −β + ω   
, (4)

with k  and β  are constants, and /ch mk mω = is the characteristic frequency of the chain. Substitution of 

(4) into (1) and (3), shows that it solves these equations if we have sinhch kβ = ω . If 0b < , then 

1( ) ( ) 0j jx t x t+ − <  for all values of j  and t . This corresponds to the compressive atomic lattice waves 

studied by Toda.  If 0b > , then 1( ) ( ) 0j jx t x t+ − > , we have the tensile waves, which propagate to the speed 

/v a k= β , where a  is the equilibrium spacing between adjacent masses in a free chain. The speed of this 
soliton is dependent upon the amplitude. If initial conditions are small, the model (1) will have 
approximately linear behavior. For large initial conditions, the nonlinearities may lead to chaos [18].   
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3. MICROSCOPIC MODEL IMBEDDED INTO A MACROSCOPIC MODEL 

Next, the chain of 10 harmonic oscillators, described in previous section, is embedded into a macroscopic 
system of two rigid plates. The top plate of mass M  is pulled by a linear spring with a spring constant k  
connected to a stage which moves with a velocity V (Fig. 2). Within the chain, the oscillators have the masses 
denoted by im , 1,2,...,i N= , and all the spring constants are mk , and all the damping coefficients are mc . 

 

 
Fig. 2 – a) Sketch of model; b) chain of 10 harmonic oscillators. 

The equations of motion for the top plate and chain of oscillators are [15] 
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where X  is the coordinate of the top plate, ix  are the coordinates of chain masses, mc  is the damping 
coefficient between masses and between masses and the lower plate. The spatial interaction between the 
masses and the top plate is described by the potential ( )i jW x x− . The dissipative forces between the 

oscillators and respectively, the oscillators and plates, are proportional to their relative velocities, i.e. m ic x , 

and respectively ( )m ic x X− . The interaction between the plates is realized through the particles chain. For 
the potential ( )i jW x x−  we choose [15, 17] 

0( ) cos( (( ))i j i jW x x W r x x− = − − , (6)

where 0W is the minima of the potential, 2 /r d= π , and d  is the spatial period of the interaction between 
oscillators and the plate. 

Let us introduce dimensionless variables and parameters: the coordinate /y x d=  and the time tτ = ω , 

where 0 /r W mω=  is the frequency of the small oscillations of the particle in the minima 0W , /mc mγ = ω  
which is a dimensionless friction constant, /m Mε =  the ratio of particle and plate masses, /α = Ω ω  the 
ratio of frequencies of the free oscillations of the tope /K MΩ =  and ω , ( ) /d a dδ = − , the misfit of the 

substrate and chain periods, and ( )2/chρ = ω ω  the ratio of the frequencies related to interparticle and 

particle-plate interactions, /V V d= ω  the top plate dimensionless stage velocity. 
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4. RESULTS 

The overdamped regime is realized if the spring constant K  is sufficiently weak, and/or if the damping 
constant mc  is large. In numerical simulations we use: 1/120ε = , 0.7γ = , 0.1δ = , 0.15α = , 1ρ = . 

We suppose that the mass M  moves with a dimensionless stage velocity 0.8V < , which is smaller 
then the velocity for which the chain decouples from the plates. Fig. 3 presents the time evolution of the 
spring force during the slip relaxation ( sF  is the static force). More than one time scale in the relaxation 
process is observed; three slip parts: 0 1t t t< < , 1 2t t t< < , and 2 st t t< < are put into evidence. Time evolution 
of the spring force has an additional slip part in 2 st t t< < , if we compare with the results reported in [15]. In 
Fig. 4 the evolution in time of the top plate velocity during relaxation, is displayed. The velocity drops 
abruptly in the range 0 1t t t< < , and increase abruptly in the range 1 2t t t< < . After that, in the range 

2 st t t< < , the velocity relaxes slowly towards the stage velocity. The behavior aspects are slightly different 
in 2 st t t< < , than those reported in [15]. In Fig. 5 displays the variation of length of the embedded chain, 
during slip relaxation for the same three behaviors observed before. 

 

 
Fig. 3 – Time evolution of the spring force during slip relaxation. 

 
Fig. 4 – Time evolution of top plate velocity during slip relaxation. 

 

 
Fig. 5 – Time evolution of the embedded chain length during slip relaxation. 
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In the phase space of the spring force vs. the chain length, the only closed orbits are the stationary 
point, the stable stick slip solution, and the unstable orbit, which oscillates without coming to a complete 
stop. Initial conditions which lie within the unstable limit cycle, tends to go towards the stationary point, 
ande initial conditions, which are outside the unstable orbit, tends to go towards the periodic solution. 

 

 
Fig. 6 – A diagram of the unstable limit cycle and the stick-slip limit cycle. 

A diagram spring force-chain length of the unstable limit cycle and the stick-slip limit cycle is 
displayed in Fig. 6, for 0.3V = . As we increase the top plate velocity, the unstable cycle grows until it 
collides and eliminate the stick-clip cycle, as illustrated in terms of the maximum spring force in Fig.3. The 
point inside the limit cycles mark the stationary point. 

5. CONCLUSIONS 

In this paper, we consider a molecular system of harmonic oscillators coupled through buckling 
sensitive elastica, embedded between two macroscopic plates. We conclude that our results are in a good 
agreement with the results reported in [14–17]. We focus on the time-dependent relaxation of the slip part 
between two successive stick events, on the range of high stage velocities, where the motion exhibits chaos. 
The buckling nonlinearity of embedded chain may coexists with different patterns of dynamics, including 
chaos, and leads to the observed experimental behavior and to predictions that are amenable to experimental 
tests. 
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