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A first study is reported of the influence of unsteady flow on the aerodynamics and aeroacoustics of 
vertical axis wind turbines by numerical simulation. The combination of aerodynamic predictions 
with a discrete vortex method and aeroacoustic predictions based on Ffowcs Williams-Hawkings 
equation is used to achieve this goal. The numerical results show that unsteady flow of the turbine has 
a significant influence on the turbine aerodynamics and can lead to a decrease in generated noise as 
compared to the conventional horizontal axis wind turbine at the similar aerodynamic performance. 
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1. INTRODUCTION 

Rising concern for wind turbine noise as a source of community annoyance has led to the introduction 
of increasing noise regulations for all wind turbines. In the last time, the problem of wind turbine noise is 
aggravated by the application of larger machines leading to significant increases in the levels of aerodynamic 
noise. In the most cases, the major part of the aerodynamic noise of a rotor is generated by blade finite 
thickness and blade loads accounted for the first and second terms in the Ffowcs Williams-Hawkings 
equation [1]. The present work addresses the aspect of the radiated low-frequency noise of vertical axis wind 
turbines. Although the frequency range is below the threshold of human hearing the radiated sound pressure 
can influence people [2, 3]. 

2. AERODYNAMIC ANALYSIS 

Vortex Model. All calculations of this work were performed with a discrete vortex method [4]. It 
allows load and flow field calculations of vertical axis wind turbines with straight blades and includes a free 
wake model. The local air velocity relative to a rotor blade consist of the free-stream velocity, that due to the 
blade motion and the wake induced velocity (Fig. 1). In order to predict the inflow at the blades it is 
necessary to describe the blade surfaces and the wake. The blades are simply lifting surfaces of large span, so 
the each blade of the rotor is represented by a bound vortex lifting line located along the rotor blade quarter 
chord line with the incident-flow boundary condition met at the three quarter chord location. 

The wake consist of shedding spanwise vortex filaments resulted from the temporal variation in 
loading distributions on the blades as required by Kelvin’s theorem. A simple representation of a two-
dimensional vortex system associated with a blade element is shown in Fig. 2. The contour encloses both the 
airfoil and its wake and any change in the bound circulation must be accompanied by an equal and opposite 
change in circulation in the wake. This model is based on the marching-vortex concept where motion begins 
from an impulsive start with the subsequent generation of a vortex wake, modeled by a sequence of discrete 
vortices shed at equal time intervals. Thus, for steady-state motion, the force and moment responses are 
asymptotically achieved. Vortices which are shed during any given time period can be related to the change 
in bound vortex with respect to time and position along the blade. All variables associated with a particular 
point vortex as point coordinates and velocities as well as vortex strengths are identified by a double 
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subscript (i, j). The first subscript denotes the blade element from which the point-vortex originated, while 
the other subscript denotes the time step at which the vortex originated. 

Fig. 1 – Two-dimensional rotor configuration. Fig. 2 – Marching-vortex model. 

Referring to the diagram of Fig. 2, the spanwise shed vortex strengths can be written as 

( ) ( ) ( ), – 1 , – 1 – , .s B Bi j i j i jΓ = Γ Γ  (1)

The discrete vortices ( )jiS ,Γ  are assumed to move downstream with the local fluid velocities given by 

( ) ( ), ,Ii j i j∞= +V V V , (2)

where ∞V  is the undisturbed freestream velocity and ( )V ,I i j  is the induced velocity by all of discrete 
vortices in the flow field forming the vortex wake structure. To determine all the point-vortices in the wake, 
we use 

( ) ( ) ( ), , 1 , 1i j i j i j t= − + − ∆r r V . (3)

The induced velocity at the wake points is computed by application of the Biot-Savart law. 

Governing Equations. According to the Biot-Savart law, the velocity induced at a point C in a flow by 
an infinitely long vortex filament of strength Γ is given by 

( ) 2
r ΓV
2I C

r
×

=
π

, (4)

where r is the position vector from point C to the point vortex. If the point C should happen to come very 
close to a point vortex, Eq. (4) becomes indeterminate, and a Rankine vortex model (with a viscous core) is 
used. The vortex core radius cr  can be found assuming that the maximum velocity cv  in the core is equal to 
the velocity on either side of the vortex sheet springing from the trailing edge of the airfoil 
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where R is the rotor radius and ∆θ is azimuthal blade angle step. 
The total velocity at a lattice point ( ),I i jV  is obtained by summing the induced velocities from all 

other vortices in the flow. With lattice point notation this can be written as 

( ) ( )
1 1

, ,
NB NT

I ISV
k l

i j k l
= =

=∑∑V V  (6)

where ISVV  is the velocity induced by shed vortices, NB is the number of blades and NT is the number of 
time steps. The closure of the vortex model is the relationship for the bound vortex strength BΓ  which can be 
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related to the local relative air velocity relV , section chord c and the section lift coefficient ( )LC α  through 
the Kutta-Joukowski law 

1
2B L relC cVΓ = . (7)

The local relative velocity in the plane of the airfoil section relV  and local airfoil angle of attack α are 
functions of the local tangential velocity of the blade element TU , the induced velocity at the control point 
on the blade element ( ), ,I u v wV , the wind velocity ∞V  and the azimuthal blade angle θ. Referring to Fig. 1, 
the following relationships can be obtained 

( ) ( )cos sinrel T TV u U w U∞= + + θ + − θV i k ,  (8)

( ) ( )
1/ 22 2

rel rel relV  = ⋅ + ⋅ V n V t , (9)
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V n
V t

, (10)

TU R= Ω . (11)

In the case of low tip-speed ratio (TSR), the vortex methods developed in the past based on the quasi-steady 
analysis showed large discrepancy due to the effect of dynamic stall on the moving airfoils. A correction 
based on the Beddoes-Leishman dynamic-stall model [5] was included for unsteady aerodynamics. Thus, the 
effects of dynamic-stall are now automatically introduced into Eq. (7). 

The blade airfoil section tangential and normal-force coefficients TC  and NC  can be written as 

sin cos , cos sinT L D N L DC C C C C C= α − α = − α − α , (12)

where the section lift and drag coefficients LC  and DC  are also yielded by the aerodynamic stall model. 
The instantaneous blade loadings are defined in terms of the nondimensional normal and tangential 

forces as follows 

21/ 2
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where NF  and TF  are the normal and tangential forces on the blade,  ρ is the fluid density; c is the airfoil 
chord length; L is the blade length and V∞  is the freestream velocity. 

The average power coefficient for the entire rotor during a single revolution is given by 
2NTI NB

1 1

TSR
NTI 2 ij

rel
P T

j i ij

VcC C
R V∞= =

 
=  

 
∑∑ , (15)

where NTI is the number of the time steps per revolution of the rotor. 

Numerical Procedure. For this free wake-lifting line blade method, the unknowns of the problem are 
both the constant spanwise bound circulation and wake geometry. Since the wake geometry is not a priori 
known, the numerical procedure requires that calculations be made at successive small time steps until a 
periodic solution is built up. Initially, there is no wake structure and it is only as the wake develops 
sufficiently that a periodic solution is obtained. Therefore, the wake geometry is computed employing a 
time-stepping procedure and the solution for the circulation strength is then obtained at each time step using 
the above aerodynamic relationships. 
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The numerical procedure begins with no wake structure and zero bound vortex strength (zero induced 
velocities). The bound vortex strength and the last value of the induced velocity are then calculated for each 
blade using Eqs. (7)-(11) and Eq. (6) respectively. The process is repeated until consistent values are 
obtained for the induced velocities and bound vortices. The computation loop is ended by the calculation of 
the instantaneous blade forces Eqs. (13), (14) and the new positions of the entire wake point vortices, Eq. (3). 
Time is increased and a new set of shed vortices is created using Eq. (1). The foregoing procedure may be 
repeated to obtain the solution at future times. In order to reduce the computational effort the wake is 
truncated after a periodic solution is achieved (i.e. three rotor revolutions). 

 

 
Fig. 3 – Distribution of normal and tangential forces at λ=2.5 . 
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Fig. 4 – Distribution of normal and tangential forces at λ=5. 

Numerical Results. Based on the proceeding analysis, a computer program has been developed to 
predict the force and moments of a vertical axis wind turbine (VAWT). A rotor with two straight blade 
configuration was designed to operate at an optimum tip speed ratio λ (TSR) of five. An aerodynamic 
difference between a VAWT and HAWT (horizontal axis wind turbine) is the appearance of unsteady flow 
phenomena. During a revolution of the rotor of VAWT in a steady wind stream, the flow direction and 
velocity relative to the rotor blade vary in a cyclic way. The angle of attack becomes about 180 degrees at off 
design point. This behaviour is stronger at small λ ( 3≤ ) and the correction of dynamic-stall effects is 
necessary. 
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Figures 3 and 4 show the distribution of normal and tangential forces in the case of 5.2=λ  and 5. It 
can be seen that at moderate to large λ the downstream ( 00 360180 −=θ ) blade forces are reduced 
significantly from those upstream and the positive torque is mainly generated at the upstream. 

Figure 5 shows the power coefficient of the VAWT and the conventional HAWT [6]. The maximum 
power coefficients was the same about 0.40 at λ=5. 

 
Fig. 5 – Power coefficients. 

3. AEROACOUSTIC ANALYSIS 

As a next step the aeroacoustics of a two-blade VAWT was calculated using Ffowcs Williams-
Hawkings equation [1] and the numerical computation method developed by Succi [7]. The compact body 
and low Mach number assumptions are used in this computation. Also, this part deals with rotor noise 
radiating only from blades, thus ignoring the effect of the tower. The simplification provides a better 
understanding of the basic noise generating mechanisms without additional complexity. The effect of the 
tower can be introduced later on. Since the relative Mach number is small (0.12), the dipole contribution 
dominates the aerodynamic noise radiated from low-speed vertical axis wind turbine. Furthermore, the cyclic 
variation of velocity relative determines effects of the unsteady aerodynamics (intrinsic unsteadiness) besides 
the unsteadiness due to the motion of sources (dipoles). This unsteady-loading noise dominates the whole 
aerodynamic radiation and the global noise level is predicted smaller than that of the horizontal axis wind 
turbine under consideration. 

Numerical Results. The acoustic calculation is based on a two-bladed turbine with 10 kW rated 
power, a rotor diameter of 10 m and a nominal rotational speed of 76 rpm. The noise is estimated at upwind 
10 m distance from the rotor axis and the mean wind speed of 8 m/s. Figure 6 shows the computed spectra 
for the horizontal and vertical rotors with the similar aerodynamic performance. The noise level of the 
VAWT at λ=5 is about 47 dB, while the value for the HAWT is nearly equal to 56 dB. However, at certain 
harmonics the sound levels are larger for the vertical rotor. Generally speaking, the non-uniform flow field of 
a vertical axis wind turbine has a favourable effect on the aerodynamic noise generation. 
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Fig. 6 – Computed spectra for the horizontal and vertical rotors. 

4. CONCLUSIONS 

The combination of aerodynamic predictions with a discrete vortex model and aeroacoustic predictions 
based on Ffowcs Williams-Hawkings equation is numerically investigated for a VAWT. The complicated 
wake structures can be captured with the aerodynamic model and reasonable power coefficient is also 
obtained. The acoustic analysis shows that the unsteady flow of the VAWT alters the aerodynamic field and 
can thereby reduce the radiated sound with the increase of its tonal content. The above results indicate that 
the vertical axis wind turbines are useful options in order to develop the low-noise power generators. 

NOMENCLATURE 

c − airfoil chord length 
CD − drag coefficient 
CL − lift coefficient 
CM − moment coefficient 
CN − normal-force coefficient 
CP − rotor power coefficient 
CT − tangential-force coefficient 
FM − normal force 

+
NF  − dimensionless normal force 

FT − tangential force 
+

TF  − dimensionless tangential force 
i, j − index 
KI − empirical constant of dynamic-stall model 
n  − unit vector in normal direction  
NB − number of blades 
NT − number of time steps 
NTI − number of time steps per revolution 
r  − position vector  
rc − vortex core radius 
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R − rotor radius 
Re − Reynolds number 
t  − unit vector in the chordwise direction 
u − induced velocity component in x direction 
UT − rotor tip speed 
V∞, Vw − wind velocity 

ISVV  − velocity vector induced by shed vortices 
Vrel − relative velocity in plane of airfoil 
v  − induced total velocity vector 
w − induced velocity component in z direction 
x − wind direction 
α − angle of attack 
γ − empirical constant 
Γ − circulation 
ΓB − bound vortex strength 
ΓS − spanwise vortex strength 
θ − Azimuthal blade angle 
ρ − fluid density 
  

Subscripts 
B − blade 
c − core 
D − drag 
I − induced 
L − lift 
M − moment 
P − power 
S − shed 
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