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By numerical simulation using a nonlinear Kelvin-Voigt model this paper propose a modeling method 
for resonant peaks dispersion provoked by nonlinear properties of the site materials. This method 
leads to a better approximation of the nonlinear dependence of dominant site periods, dependence 
with an important impact about site-structure resonance avoidance. 
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1. INTRODUCTION 

The dynamic response of a certain structure is strongly dependent of the ratio between the natural 
period of the structure and the dominant period of the emplacement site. It is very well known that the major 
damages arise at resonance, when the natural period of structure is equal or very close to the dominant period 
of the site. For this reason, a correct evaluation of site dominant period has a special importance. 

The site materials, soils or rocks, are nonlinear materials with a dynamic behavior strongly dependent 
of loading level and this behavior affects the whole dynamic response including the system natural period 
values [2], [4]. The neglect of this nonlinear behavior by using the computational methods of the linear 
dynamics when evaluating the site period, may be a source of errors for predicting the structural-site 
response.  

The present paper intends to discuss the dynamic effects given by nonlinear material properties on 
system natural period evaluation. In this intent we will use the magnification functions of the nonlinear 
Kelvin-Voigt model [2, 3]. By numerical simulation with different loading level, we can able to model the 
effects of the soils nonlinearity on the shape and resonant magnitude of the magnification functions. Thus, 
we shall obtain a proper tool for modeling the resonant peak dispersion, which is a very important condition 
for a correct natural periods evaluation and therefore for site-structure resonance avoidance. 

2. NATURAL PERIOD – RIGIDITY RELATIONSHIP  

In linear dynamics, a usual description of a solid single-degree-of-
freedom behavior is given by the Kelvin-Voigt model consisting of a mass 
m supported by a spring (with a stiffness k) and a dashpot (with a viscosity 
c) connected in parallel (fig. 1.1). The governing equation of this system 
under harmonic excitation (with the amplitude 0F  and pulsation ω) is [15]: 

 F = F0 sin ωt 
 x 

2
02 sinx x x q t+ ζ + ω = ω  (2.1) 

where: 

0
02    ;      ;    Fc q

m m
ζ = = ω =

k
m

 (2.2) 

 c  k  

       m  

Fig.1.1 Linear Kelvin-Voigt model 
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ζ being a usual damping measure (damping ratio / crc cζ = ), and 0ω  is the natural pulsation, connected by 
natural frequency 0f  through the relationship: 0 02 fω = π . 

The natural period of this system   is: 0T

0
0 0

1 2 2 mT
f k

π
= = = π

ω
 (2.3) 

Thus, from eq. (2.3) it follows that, for a constant mass, the natural period and rigidity are in inverse 
ratio – the rigidity increasing leads to the natural period shortening and a diminishing rigidity leads to the 
oscillation with larger natural periods. 

3. RIGIDITY OF THE SITE MATERIALS 

The site materials are nonlinear materials with a dynamic behavior strongly dependent of loading level 
and this behavior affects the whole dynamic response including the system natural period values [2], [4]. The 
nonlinear behavior means the loading dependence of the material properties and the dynamic material 
characteristics G and ζ becomes functions in terms of strain level γ. Therefore, another dynamic 
characteristic – the rigidity k - become strain dependent function ( )k k= γ too. Because the rigidity is in 
direct proportional ratio with modulus G we can write:  

( ) ( )k A Gγ = ⋅ γ  (3.1) 

where A are the proportional factor. 
 From eqs. (2.3) and (3.1) results that the natural period  of the systems which include nonlinear 
materials becomes strain dependent, too: 

0T

( )
( ) ( ) ( )0

2 2 1m m BT
Ak G

π π
γ = = =

γ γ G γ
 (3.2) 

where 2 /B m A= π  is another material constant. 
The modulus-function ( )G G= γ can be written in the normalized form ( ) ( )0 nG G Gγ = ⋅ γ where ( )nG γ  

is the modulus-function normalized in terms of his initial value 0 0G G γ== . Thus, the strain dependence of 

the natural period (3.2) can be written in the similar form: 

( )
( )

( )0
0

1
init n

n

BT T
G G

γ = = ⋅ γ
γ

T  (3.3) 

where  represent the initial value of the natural period: initT

( )0 0
0 0

2 2init
m mT T

AG kγ== γ = π = π  (3.4) 

 and the term  represents the strain dependence of the natural period: ( )nT γ

( )
( ) ( )

1 1
n

n n

T
G k

γ = =
γ γ

 (3.5) 

where ( )nk γ is the rigidity function ( )k γ  normalized in terms of his initial value ( )0 0k k γ== γ . 
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4. EVALUATION OF THE SOILS NATURAL PERIOD CHANGES BY RESONANT 
COLUMN TESTS 

In principle, from resonant column test a certain modulus-function value G for a certain strain level γ is 
obtained by mediation of shear vawe velocity sv  using the well-known relationship: 

2
sG v= ρ  (4.1) 

where ρ is the mass density of specimen [4], [14]. The shear wave velocity provided by resonant column test 
is obtained in the form: 

0 0

2 31 4
3 45

s
h hv

R R R

ω ω
= =

Ψ
− +

 
(4.2) 

where  is the specimen natural pulsation, h is the specimen height and 0ω Ψ  is the root of torsional 
frequency equation with analytical form in terms of the ratio between torsional inertia of the specimen and 
the torsional inertia of the top cap system: / topR J J= [4], [15]. 

From eqs. (2.3) and (4.2) the expression for the specimen natural results: 

0
0

22 1h
T

G
π ρπ

= = ⋅
ω Ψ

 (4.3) 

and thus the proportionality constant A from eq. (3.4) can be now full determines: 

2 h
A

π ρ
=

Ψ
 (4.4) 

 After several tests with different strain level γ we can obtain the modulus function 
and the natural period functions (3.3) ( ) ( )0 nG G G G= γ = ⋅ γ ( ) ( )0 init nT T Tγ = ⋅ γ  where the initial value  

has (3.4) expression and normalized form 
initT

( )nT γ  is given in eq. (3.5). 
The natural periods obtained by resonant column test is the natural periods of the s.d.o.f. oscillating 

system composed by a single mass (the vibration device) supported by a spring and a damper represented by 
the specimen [2].  The natural period value depends on mechanical properties of the specimen material but it 
is a system characteristic and not a material characteristics.  

Fortunately, as can see from eqs. (3.4) and (3.5), the physical and geometrical properties are included 
only in the initial value  of the nonlinear natural period function  and the normalized form  (3.5) depends 
only on normalized material characteristics.  

initT

Thus, the resonant column test can offer accurate data for obtaining the nonlinear dependence of the 
natural period. Certainly, the initial value of the natural period function must be obtained from another way 
by any test performed on investigated nonlinear system. As can see in the next, for the site nonlinear systems 
which contains soils nonlinear materials can be use the data recording during seismic events. 

Relationship (3.5) allows estimating the nonlinear variation of the natural periods if the modulus-
function ( )n nG G= γ  is previously determined. For example, in fig. 4.1 there are given some normalized 
modulus-functions obtained from resonant column data and in fig. 4.2 the corresponding normalized natural 
period functions obtained from eq. (3.5) are given.  

As we can see from this experimental data processing, the reduction of the modulus-function values 
due to dynamic degradation leads to the increasing period values, the same inverse variation between rigidity 
and natural period as in the linear material case. 
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Fig. 4.1 Some normalized modulus-functions Fig. 4.2 Nonlinear variation of the natural periods 

5. NONLINEAR NATURAL PERIOD FUNCTIONS IN TERMS OF LOADING 

For practical applications it is necessary to determine the normalized natural period in terms of loading 
amplitude and because in the seismic calculus the usual loading amplitude is PGA (peak ground acceleration) 
we must modify the functions  in ( )n nT T= γ ( )n nT T PGA=  form.  

For this conversion, we can use the nonlinear Kelvin-Voigt model [3], [4] subjected to support motion 
( ) 0 sing gx t x= tω  with different acceleration amplitude 0

gx . In this loading case, the motion equation reads as: 

( ) ( )2
0 02 gx x x k x x x+ ω ζ ⋅ + ω ⋅ = −  (5.1)

Using the change of variable  and introducing the new time function t0ω=τ ( 0( ) ( ) /x t x )ϕ τ = = τ ω  we can 
obtain for eq. (5.1) another form: 

( ) ( ) sinC K′′ ′ϕ + ϕ ⋅ϕ + ϕ ⋅ϕ = μ υτ  (5.2)

where the superscript accent denotes the time derivative with respect to τ, and: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )2

0

0
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2     ;      
0

                                        ;   

n
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c x k x k x
C C x x K K x k
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x

ϕ ≡ = = ζ ϕ ≡ = = =
ω ω

ω
μ = υ =

ω ω

0

x
k

 (5.3)

The steady-state solution of the equation (5.2) can be written in the form: 

( ) ( ), , ; sin( )ϕ τ υ ζ = μΦ υ ζ υτ −ψ  (5.4)

where ( ;Φ υ )ζ  is the nonlinear magnification function:  

( )
( )max , ,

; τ
⎡ ⎤ϕ τ υ ζ⎣ ⎦

Φ υ ζ = =
μ

dynamic

static

x
x

 (5.5)
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a ratio of maximum dynamic amplitude  to static displacementmax dynamicxϕ ≡ staticxμ =

)

. For given amplitude μ 
the nonlinear equation (5.2) can be numerically solved using a computer program based on Newmark 

algorithm [4], and the nonlinear magnification function ( ) ( .
.

; , ; ct
ct

ζ=
μ=

Φ υ μ ζ = Φ υ ζ can be obtained.  

To illustrate this method in fig.5.1 such a numerical simulation result is presented. For this example the 
material dynamic function for clay was used [6, 9]. By this simulation one can point out a softening type 
behavior with resonant picks at pulsation υ located before the linear resonant pulsation . 1υ =

Fig. 5.1 Nonlinear magnification function  Fig. 5.2  Natural period variation in terms of  μ 

Because  from the simulation results given in fig.5.1 we can obtain a relationship 0/ 1/ nTυ = ω ω =

( )n nT T= μ  (fig.5.2). The normalized amplitude μ is connected by abutment acceleration amplitude 0
gx  

through the eq. (5.33)  (fig. 5.3) and together with the relation 0 /gxμ = ω2
0 ( )n nT T= μ enables us to obtain a 

relationship (fig. 5.4): 

( )

( )
( )0

2 2

0.9 1.9exp 3.521
n n

ng

p p

T T

T Px gPGA PGA

= μ ⎫
⎪
⇒ = − +⎬

μ = μ = = ⎪ω ω ⎭

GA  (4.12)

where g is gravity acceleration ( ).  29.81 m/sg =

 

Fig. 5.3 Relationship μ - PGA Fig. 5.4 Natural period variation in terms of PGA 
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6. EVALUATION OF THE SITE NATURAL PERIOD 

Knowledge of the normalized natural period for each site materials as it was previously determined is 
not enough for the evaluation of the entire site normalized natural periods. Each layer has a contribution 
depending on its geometrical properties. For that, we accept the hypothesis of the normalized natural period 
dependence in terms of the layer thickness.  

According to the thickness dependence hypothesis, the average natural period variation for the entire 
site layers  will be composed as the average of the normalized natural period  weighted with the 
thickness  of each layer: 

av
nT

ih

i
nT

i
n iav

n
i

T h
T

h
⋅

= ∑
∑

 (6.1)

To exemplify this method we choose the site emplacement of the seismic station INCERC with known 
stratification [1] (table 6.1).  

First, for each constituent layer the material modulus-function  was estimated in concordance with 
previous resonant column data [8] and thus by numerical simulation a function  ( )i i

n nT T PGA=  was obtained. 
Then, for some PGA values (0.05, 0.10, 0.15, 0.20 and 0.25 g) using eq. (6.1) the site natural period averages 
was obtained. The results are given in fig. 6.1. 

Table 6.2 

Event data Mw 
Observed 

accelerations 
[cm/s2] 

PGA 
[g] 

T0 
[s] Tn 

  0 0.21 1.00
27.09.2004 4.6 7.97 0.008 0.23 1.07
18.06.2005 4.9 10.53 0.011 0.24 1.12
27.10.2004 6.0 13.69 0.014 0.25 1.16
30.05.1990 6.9 85.20 0.087 0.35 1.63
30.08.1386 7.1 95.72 0.098 0.50 2.33
04.03.1977 7.4 0.250 1.20 5.58

This evaluation method of the natural period variation using resonant column data for a certain site can 
be validated by comparison with seismic data recording at the same site. The spectral analysis of seismic 
data recording during Vrancea earthquakes with different magnitudes shows a doubtless dependence of 
maximum accelerations and dominant periods on earthquake magnitude ( wM ) [11, 14]. Such data recording 

Material Thickness 
[m] 

vs 
[m/s] 

Silty clay 4.5 460
Sand and gravel 28.5 460
Clays 17.0 385
Fine sand and clay 17.0 340
Clays 8.0 455
Fine sand 53.0 400

Table 6.1 

Fig. 6.1  Normalized natural period for INCERC 
emplacement using RC data 
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at INCERC seismic station are given in table 6.2 (after [11, 12, 13, 14]). From these data one can obtain a 
numerical correlation of the type  (fig. 6.2). As we can see in table 6.2 and fig. 6.2 the natural 

period  is increasing function on seismic loading as it was observed in the case of processing resonant 
column data, too. Because in the both processing methods the information provided from the same site was 
used, a comparison between them is permissive. Such a comparison is given in fig. 6.3, which plots together 
the same function  provided by both column resonant data (fig.6.1) and seismic data (fig.6.2).  

(0 0T T PGA=

)A

)
0T

(n nT T PG=

Fig. 6.2  Dependence T0 – PGA from seismic records Fig. 6.3 Dependence T0 – PGA provided both resonant column data 
and seismic record 

As one can see from fig 6.3, the differences between these different acquisition methods are not too 
large. 

In the previous, for the validation of the RC 
method the geological and seismic data of the 
INCERC site was used because for this site there 
are multiple seismic recording with different 
magnitudes beginning with low events until the 
strong March 4, 1977 earthquake. However, for a 
large majority of the usual sites only seismic 
recording of the low and moderate events are 
available. In these cases, the evaluation of the 
dominant period for strong earthquakes using only 
seismic low and moderate data presume an 
extrapolation procedure with inherent large errors. 
To exemplify, in fig. 6.4 are shown few numerical 
extending functions for INCERC site using only 
low and moderate data. As can see, the obtaining 
periods corresponding to strong March event are 
very differents.  

In the resonant column device, the sample 
can be loaded with a large excitation domain 

equivalent to low until to strong earthquakes. The evaluation method of the nonlinear dependence of 
dominant periods using resonant column data presumes an interpolating process with a better approximation, 
which replace the uncertain extending process. From this reason, we think that the resonant column 
determination of the nonlinear variations in normalized form: ( )n nT T PGA=  together with the determination 
of the normalization value  from seismic recording can leads to a better approximation of the dominant 
periods for large PGA values when only low and moderate seismic data are available. 

Fig. 6.4 Extrapolation from partial data and RC interpolation  

initT
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CONCLUDING REMARKS 

• The natural period and rigidity are inversely proportional both for linear and nonlinear materials. 
• The site geological materials have a degradable rigidity function of the strain level, and the increase 

excitation level leads to the rigidity decrease and the increase of the natural period values.  
• The dependence of the dominant site period on the excitation level - ( )0 0T T PGA=  - can be obtained 

from recorded seismic data if these data cover the entire PGA value range. 
• The dependence of the natural period on the excitation level in normalized form - ( )n nT T PGA=  - can be 

modeled by interpolation of the resonant column data. This method described in this paper has been 
validated using recording earthquake data. 

• When only low and moderate seismic data are available, the resonant column determination of the 
nonlinear variations in normalized form: ( )n nT T PGA=  together with the determination of the 
normalization value  from seismic recording can leads to a better approximation of the dominant 
periods for large PGA values. 

initT
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