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In relative motion to the car body, the rear axle of the motor vehicles (usually, for the off-road and the 
commercial vehicles) is guided by spatial mechanisms, on which between axle and chassis a number 
of binary links or kinematics chains are interposed (multi-link mechanisms). From kinematic point of 
view, the suspension mechanisms of the rear axles have to assure the main motions of the axle, 
namely the vertical displacement and the roll rotation, with minimum values for the other spatial 
motions (the transversal & longitudinal displacements, and the yaw & pitch rotations). In this paper, 
an analytical method for the kinematic optimization of the multi-link mechanisms used for the 
guidance of the rear wheel is presented. According to the proposed method, the coordinates of the 
guiding points on axle are established by constructive criteria. Considering the geometric constraints, 
for imposed positions of the rear axle, the global coordinates of the joints on car body are determined.  
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1. INTRODUCTION 

For the guidance of the rear axle of the motor vehicles, there are two ways: independent guidance of 
the wheels (case in which each wheel is guided by its own mechanism), and dependent guidance of the 
wheels (rigid axle), respectively [3, 12, 15]. The rigid axle of the motor vehicles is guided by spatial linkage 
mechanisms on which between axle and chassis a number of binary links or kinematic chains are interposed. 
The connections of the guiding arms to axle and chassis are made by using elastic joints of rubber (i.e. 
bushings). To the suspension displacement, the bushings undergo elastic restricted linear and angular 
deformations, the “joint” having in fact six degrees of freedom (compliant joint). Usually, the theoretic study 
of the guiding linkages has at base the modelling of the bushing by a spherical joint, neglecting in this way 
the linear deformations [7, 8, 9, 13, 14]. By this supposition, there are simple models with one or two degrees 
of mobility (DOM), and the study can be made with classic “in-house made” methods/programs. 

The structural systematization of the guiding mechanisms is made considering the simplified 
representation bushing → spherical joint. In this way, the guidance of the axle is performed by the guidance 
of a number of its points around suitably chosen surfaces & curves (Fig. 1). By a binary link with spherical 
joints in both ends, the guidance on sphere (S) is obtained. For the triangular arms, with two joints to car 
body, the guidance of an axle point on circle (C) is achieved. The guidance on coupler curve (CC) is 
performed by a spherical joint between axle and coupler. In the last case, Watt mechanism configuration is 
frequently used, but Roberts, Chebyshev or Evans straight - line linkages can also be used [4, 6, 11].  

Joining in parallel the basic types of guidance shown in figure 1, by their combination, all possible 
guiding mechanisms with DOM=1 and DOM=2 are obtained, as follows (n - the number of bodies, including 
the guiding arms and the axle; c - the number of joints; Σfi - the sum of the mobilities in joints; k - the 
number of kinematic chains):  

 suspension mechanisms with DOM=2: 4S (n=5, c=8, Σfi=24, k=3); 2S 1C (n=4, c=6, Σfi=16, k=2); 
2S 1CC (n=6, c=9, Σfi=19, k=3); 

 suspension mechanisms with DOM=1: 5S (n=6, c=10, Σfi=30, k=4); 3S 1C (n=5, c=8, Σfi=22, k=3); 
3S 1CC (n=7, c=11, Σfi=29, k=4); 1S 2C (n=4, c=6, Σfi=14, k=2); 1S 2CC (n=8, c=12, Σfi=20, k=4); 1S 1C 
1CC (n=6, c=9, Σfi=17, k=3). 
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Fig.1. The basic types of guidance of the rear axle. 

For optimizing the axle guiding mechanisms, from kinematic point of view, the disposing of the 
guiding arms has to be taken into consideration. Usually, in literature the optimization is based on design 
sensibility analyses, using as design variables the global coordinate of the points in which the guiding arms 
are connected to car body, and to axle, respectively [1, 8]. The idea is to determine the influence of the 
design variables on the design objectives that define the kinematic behaviour of the guiding mechanism, and 
to realize the optimization study by modifying the main design variables in pre-defined fields. These 
methods have to be particularized for each type of axle guiding linkage, representing in fact a multi-run 
analysis with different input data that gives the feedback on the effects of the changes.  

On the other hand, the literature presents the optimization algorithms that are included in the 
commercial MBS (Multi-Body Systems) programs, such as ADAMS of MSC Software, NISA-DYMES of 
EMRC, or PAM-MEDYSA of ESI Group. The MBS optimization is based on the parameterization of the 
virtual model, by using design points, expressions and design variables, selecting the main design variables, 
through design studies and design of experiments, and minimizing or maximizing the objective function over 
a selection of design variables, while satisfying various constraints on the design and state variables of the 
system. Various algorithms are available for finding a solution to an optimization problem, for example 
OPTDES algorithms (Generalized Reduced Gradient, Sequential Quadratic Programming), or DOT 
algorithms (Modified Method of Feasible Directions, Sequential Linear Programming, Sequential Quadratic 
Programming) [5, 10, 16, 17]. Unfortunately, the commercial MBS programs are very expensive, even in 
academic license configuration. 

In these terms, the paper presents a general analytical method for the optimal geometric synthesis of 
the axle guiding mechanisms, in a unitary approaching. The method can be applied for all suspension 
mechanisms of the rear axle (with DOM=1 and DOM=2), as well as for the guiding mechanisms of the front 
& rear wheels (independent suspension). The general characteristic of the method comes from the 
decomposition of the guiding mechanism in the elementary binary chains (ex. sphere-sphere, sphere-
rotation), which are separately studied; with these chains, we have the possibility to build any type of guiding 
mechanism. In the mechanism context, the “connection” between the elementary chains is made through the 
global coordinates of the joints on axle, whose spatial positions (trajectories) are imposed. The idea is to 
determine the global coordinates of the joints on car body for generating the imposed trajectory of the axle. 
The optimal values of the objective functions, which define the kinematics of the suspension mechanism, are 
proportionally reduced relative to the initial variations, the reduction coefficients being established by 
constructive criteria; in this way, the mechanism remains in rational constructive limits. For realizing 
numeric simulations, the method was transposed on computer using the DELHI programming language. 

2. OPTIMIZATION CRITERIA 

In kinematics (analysis and synthesis), the geometrical model of the axle guiding mechanism (Fig. 2) is 
defined by: the global coordinates of the joints on car body, in the global reference frame (attached to car 
body, which is fixed in the kinematic study) - XM0i, YM0i, ZM0i; the local coordinates of the joints on axle, in 
the local reference frame - XMi(P), YMi(P), ZMi(P); the lengths of the guiding arms - li = |MiM0i|; the initial 
position of the axle in the global reference frame - XP

0, YP
0, ZP

0; the radius of the wheels; the distance 
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between wheels. The global reference frame (OXYZ) has the axes parallel with longitudinal, transversal and 
vertical axes of the vehicle. The axle reference frame (PXPYPZP) has the origin P in the centre of the axle, the 
axes being parallel with the global axes in the initial modelling position. 

 

 

Fig. 2. The global and local reference frames for the rear suspension system. 

According to figure 2, the spatial position of the rear axle, in OXYZ reference frame, is defined by 
three characteristic points, for all types of guiding mechanisms: the centres of the wheels Gs & Gd, and the 
point G from the transversal median plan of the axle, which is located on the technological axis XP. The 
kinematical functions of the axle (Fig. 3) are established according to the coordinates of these characteristic 
points, as follows: 

 the displacements of the axle’s centre: 
000 Δ,Δ,Δ PPPPPPPPP ZZZYYYXXX −=−=−= ; (1)

 

Fig. 3. The kinematic functions (parameters) of the rear axle. 

 the roll rotation of the axle: 

GsGd

GsGd
X YY

ZZ
−
−

= arctgη ; (2)

 the rotation of the axle around its own axis: 
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 the yaw rotation of the axle: 
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= arctgη . (4)

Relative to the car body, the rear axle must have the possibility of vertical motion (ΔZP), as well as the 
roll rotation (ηX). When the car is in motion, the modification of the mechanism’s position relative to the car 
body, determines (besides the above-described necessary motions) secondary undesirable motions: 
displacements of the axle’s centre along longitudinal (ΔXP) and transversal (ΔYP) directions; rotations of the 
axle around the vertical (ηZ) and transversal (ηY) axes. The minimization of the undesirable motions can be 
transposed into kinematical optimization criteria, as follows: ΔXP → 0, ΔYP → 0, ηZ → 0, ηY → 0. These 
criteria cannot be equally satisfied, and for this reason in optimal synthesis of the axle guiding mechanisms a 
certain criterion has priority, or a compromise will be accepted such as: ΔXP∈[ΔXP min, ΔXP max], ΔYP∈[ΔYP 

min, ΔYP max], ηZ ∈[ ηZ min, ηZ max], ηY ∈[ ηY min, ηY max], where the limits can be established depending on the 
top speed of the vehicle, the type of tires, and the type of vehicle (these characteristics are imposed by the 
automotive designer's requirements) [3, 11]. 

3. OPTIMIZATION ALGORITHM 

Theoretically, all geometric parameters have influence on the kinematical behaviour of the guiding 
mechanism. By the proposed method, the local coordinates of the guiding points (i.e. the joints between the 
axle and the guiding arms), the initial position of the axle, the radius of the wheels and the distance between 
the wheels, are established by constructive criteria. Therefore, the global coordinates of the joints on car 
body remain as design variables that are available for the optimal synthesis of the axle guiding mechanisms. 
In this way, the proposed method involves three steps: imposing finite positions for axle, determining the 
coordinates of the joints between the car body and the guiding arms, and analyzing the obtained guiding 
mechanism.   

According to the chapter 2, the characteristic points Gs, Gd and G define the spatial position of the rear 
axle. Between the nine coordinates of these points there are three dependent relationships (the axle is rigid, 
so that the distances between the characteristic points have constant values):  
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In this way, only six coordinates are independent parameters for kinematics. Imposing “m” positions to 
the characteristic points, which define the origin and the orientation of the axle reference frame in relation to 
the global reference frame, the global coordinates of the guiding points Mi (the joints between axle and links) 
can be established as follows:  

[ ]PMPPM r][M ] [r ] [r ⋅+= 0 , (6)
where [rP] is the position vector of the axle's centre in the global reference frame, [rM]P  - the position vector 
of the guiding point in the axle reference frame, [MP0] - the matrix that defines the orientation of the axle 
reference frame relative to the global coordinate system. 

The equation (6) can be re-written in the following expression (form): 
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where the components [aij] of the matrix MP0 are the directors cosines between the local (axle) reference 
frame and the global (car body) reference frame. 

The finite positions that will be imposed to the axle (in fact, to the characteristic points) can be 
established according to the behaviour of a concrete mechanism (vehicle). A possibility to impose the 
positions of the characteristic points has at basis the conditions that, on the desired trajectory, the final 
variations [ΔXP, ΔYP, ηZ, ηY]f will be proportionally reduced relative to the initial mechanism [ΔXP, ΔYP, ηZ, 
ηY]i, as follows (qXp, qYp, qηz and qηy are sub-unitary coefficients): 

y
i
Y

f
Yz

i
Z

f
ZYp

i
P

f
PXp

i
P

f
P qqqYYqXX ηη ηη,ηη,ΔΔ,ΔΔ ⋅=⋅=⋅=⋅= . (7)

The equations (5) and (7), coupled with the imposed vertical positions of the wheels centres (the 
independent kinematic parameters), form the system that is used to determine the positions of the 
characteristic points on the chosen trajectory. Then, using the equation (6/6’), the global positions of the 
guiding points Mi can be determined. The guiding points Mi are constrained to remain on the fixed surfaces 
or curves that have the centres in the joints M0i between the car body and the guiding arms. The geometric 
constraint equations may be written by constant length equations.  

For the guidance on sphere (case S in figure 1), the constraint equation has the general form: 

022
0

 2
0

2
0 = l- )  Z- (Z+)Y - (Y+ )X - (X MMMMMM . (8)

The coordinates of the guiding point M in OXYZ reference frame were determined in the previous 
stage. Equation (8) can be written [2]: 

0222 =+⋅+⋅+⋅+++ RZZYYXXZYX MMMMMM , (9)

where: 
22

0
2

0
2

0000 ,2,2,2 lZYXRZ- ZY- YX- X MMMMMM −++=⋅=⋅=⋅= . (10)

Writing the equation (9) for “m” finite positions, 

( ) ( ) ( ) 0222 =+⋅+ ⋅+ ⋅+++ RZYYXX )(Z)(Y)(X kMkMkMkMkMkM Ζ , (11)

and subtracting the first relation (corresponding to k=1) from the others (k=2, ..., m), we obtain a system with 
“m-1” equations and three unknown factors (X, Y, and Z), as follows: 

( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ] 11111111 ++++ )( − )(=−⋅+−⋅+−⋅ kMkMMkMMkM rrZZZYYYXXX , 

( ) ( )kMMMk ZYXr 222 ++= . 
(12)

In fact, the equation (12) has the following form, 

( ) 11...,,, −== mkLZYXF kk . (13)

For m=4 positions, the system is linear (3 equations with 3 unknowns). For m>4, an over-determined 
system is obtained; this system is solved with the least square's approach. Considering X', Y', and Z' the 
solution of the system for k = 1, 2 and 3, the system (13) can be written:  

( ) 11...,'',',' −== mkLZYXF kk . (13’)

Subtracting the relations (13') from (13), the following relation is obtained:  

( ) ( ) kkkkk dLLZYXFZYXF =−=− '',',',, . (14)

Considering that the differences δx = X - X', δy = Y - Y', δz = Z - Z' are small, the system (14) has the 
following form: 
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According to the least square's approach, the solution (15) has to verify the equations: 
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In this way, a linear system of 3 equations with 3 unknown factors (δx, δy, δz) is obtained, as follows: 
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The best solution of the system (18) is the following: 

zyx Z'Z,Y'Y,X'X δδδ +=+=+= . (20)

In this way, the global coordinates of point M0 will be: 

222 000
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with the following medium square errors:   
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where Δ is the determinant of the system (18), ΔA, ΔB, ΔC are the algebraic co-factors of the elements [aa], 
[bb], [cc] from the main diagonal of the system, and ε is the errors with which the values dk are determined, 
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Then, the radius of the sphere (i.e. the length of the link) can be determined from relation (8):  
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 For the guidance on circle (case C in figure 1), two equations of form (8) can be written,  
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and the coordinate of the joint M0 (the pair M0’ - M0”) can be similarly determined. 
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For the guidance on coupler curve (case CC in figure 1) of the four-bar mechanism M0’- M’- M”- M0”, 
which is disposed in the transversal - vertical plane YZ (XM0’ = XM0” = XM), the synthesis problem consists in 
the determination of the fixed joint M0’- M0” considering the trajectory of the point M from the coupler of 
the mechanism. This problem can be solved in the following steps: 

 adopting the coordinates for a fixed joint (for example, YM0’, ZM0’) and the lengths l1 = |M’M0’|, m1 = 
|M’M|, m2 = |M”M|; 

 establishing the coordinates of the joint M’ (YM’, ZM’)k by solving the system: 
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 establishing the coordinates of the joint M” (YM”, ZM”)k, 

( )
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where km = m2/m1; 
 establishing the coordinates of the centre M0” (YM0”, ZM0”) and the radius l2 = |M”M0”| of the circle on 

which the point M” is guided (in fact, the position of the other fixed joint on car body), in a similar way with 
the guidance on sphere. 

The kinematic analysis of the axle guiding mechanism is performed with the “characteristic point’s 
method” [1, 14]. In the analysis method, there are the same three characteristic points that define the 
technological axle reference frame (see figure 2). Establishing the global position of the axle involves the 
determination of the nine coordinates of the characteristic points in the global reference frame, by using the 
following relations: three dependent relations between points (the constant distances - the axle is a rigid 
body), the geometric constraint equations (i.e. the mathematic modelling of the joints), and the variation 
equations of the independent parameters (the vertical positions of the wheels centres). In the constraint 
equations, the global coordinates of the guiding points are expressed with respect to the origin and 
orientation of the axle reference frame (see relation 6/6’). 

In this way, a nonlinear system is obtained, which is solved by the Newton-Kantorovici approach, the 
initial position of the system (guiding mechanism), corresponding to the vehicle in rest. In this position, we 
calculate the coordinates of the wheels centres and of the guiding points. The Jacobian of the system is 
formed by the analytical partial derivatives of the equations relative to the unknown coordinates of the 
characteristic points. In the solving procedure, we also use the Gauss-Jordan approach, for calculating the 
new solution of the system, which is compared with the previous solution. The iterative process is finished 
when the differences between values in two successive iterations satisfy the imposed precision. For a current 
position of the guiding mechanism, the initial solution of the system corresponds to the above-obtained 
position, and in this way the kinematics of the guiding mechanism is established for the whole displacement 
of the suspension. 

Afterwards, the necessary position functions that describe the kinematic behaviour of the guiding 
mechanism are established using the equations (1) - (4). The velocity state can be determined by the 
analytical derivation of the position functions; similarly for the acceleration state, considering the velocity 
functions. 

4. RESULTS AND CONCLUSIONS 

Based on the above-described method, a computer program for the kinematic optimization of the axle 
guiding mechanisms was developed using the DELPHI programming language. The analysis and 
optimization methods are based on the same principle: defining the spatial position & orientation of the axle 
by three characteristic points, and considering the vertical displacement of the wheels centres as independent 
kinematic parameters. In this way, the integration in a unitary analysis & optimization software platform is 
assured. 
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The computer program has two specific modules: analysis module and optimization module. In the 
analysis module, the input data are: the global coordinates of the joints on car body, in the global reference 
frame; the local coordinates of the joints on axle, in the local reference frame; the lengths of the guiding 
arms; the initial (static) position of the mechanism, in the fixed reference frame. As independent kinematic 
parameters (generalized coordinates), the vertical positions of the wheels centres are considered. The 
variation functions of these parameters simulate the displacement of the wheels over bumps; the “zero” 
position corresponds to the car in rest (the static equilibrium position of the guiding mechanism). For post-
processing, the analysis results are saved in tabular and plotting form. At the same time, the program 
contains specific graphic procedures for animating the mechanisms in different views (front/back, left/right, 
top/bottom, perspective).  

The optimization module contains the above-described optimization algorithm. There are selected the 
basic kinematic chains that form the mechanism, for example sphere - sphere (S - see fig. 1), or sphere - 
circle (C). The global coordinates of the joints on axle are established by using the imposed operating 
conditions (7), depending on the initial values of the objective functions (obtained in the analysis module), 
and the reduction coefficients. Each basic binary chain is individually studied, and finally the whole guiding 
mechanism is analyzed for evaluating the kinematic behaviour after optimization. If there is a problem (for 
example, from constructive limits points of view), we can change the values of the reduction coefficients.  

The method and the computer program have been tested on the guiding mechanisms of different motor 
vehicles. For instant, this paper presents the results obtained for the kinematic optimization of a 2S1C axle 
guiding linkage (fig. 4), which is similar with the guiding mechanism used for the rear axle suspension of the 
domestic vehicle DACIA 1300. In the initial mechanism (before optimization), there are the following input 
data (in mm): M0i [(-2014.5, 536, 40);(-2362, 0, 168);(-2014.5, -536, 40)] - in OXYZ reference frame, Mi(P) 
[(72.75, 536, -63.5); (-33.3, 0, 62.5); (72.75, -536, -63.5)] - in PXPYPZP reference frame, P0 [-2596, 0, 111] - 
in OXYZ, r = 259, Ea= 1376. 

The mechanism has two degrees of mobility, practically being taken into consideration the following 
functional cases: ZGs=ZGd (equal displacements of the wheels centres), and ZGs=-ZGd (equal and opposite 
displacements). For this paper, we have considered the first functional case. The optimization has been 
performed considering the following criteria: ΔXP∈[ΔXP min, ΔXP max], and ηY ∈[ ηY min, ηY max]. The variations 
ΔYP and ηZ have not been taken into consideration in the optimization process because, as result of the 
kinematic analysis, we have established that these variations are insignificant for the considered functional 
case (equal displacements of the wheels). The finite positions imposed to the axle have been established 
considering the conditions that the final variations ΔXP

f and ηY
f to be proportionally reduced relative to the 

initial values ΔXP
i - ηY

i, while ΔYP and ηZ are null for the whole displacement of the suspension. In this way, 
we obtained the following system for determining the coordinates of the characteristic points that define the 
spatial position of the axle (input data in the optimization process): 
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in which ΔXP
i, ηY

i şi ZP
i are specific to the initial mechanism, and qXp and qηy are the sub-unitary coefficients 

for reducing the kinematic parameters ΔXP and ηY. 
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Fig. 4. The structural model for the 2S1C guiding mechanism of the rear axle. 

The reduction coefficients have the values qXp =1/1.5 and qηy = 1/100, in order to keep the guiding 
mechanism in rational-constructive limits. The vertical position of the wheels corresponds to the passing 
over a bump, in the field ΔZGs,d∈[-120, 120] mm, relative to the static position (ZGs,d=111 mm). After the 
integrated optimization & analysis study, as we can see in the diagrams shown in figure 5 (curve 1 - initial 
mechanism, curve 2 - final/optimum mechanism), the axle guiding mechanism respects the imposed 
reduction coefficients, and this demonstrates the viability of the optimization algorithm. The final values of 
the design parameters (the global coordinates of the fixed joints on car body), corresponding to the optimum 
mechanism, are: M0i [(-2020.7, 536, 41.4); (-2131.25, 0, 167.5); (-2020.7, -536, 41.4)]. 

 

 
Fig. 5. The results of the optimization process. 

The above-presented optimization method is characterized by generality, and allows us to perform the 
unitary study of the axle guiding mechanisms. By this method, the influences of the deviations of the 
dimensions can also be performed. The computer program, by its generality, allows a comparative study of 
different types of guiding mechanisms with particular values of the input data. 
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