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Abstract: In this paper we  present some results about the finite dimensional  Lie p-algebras L  and 
some properties of the Frattini p-subalgebra of L. In addition, some properties of E-algebra and E-p-
algebra are pointed out. 
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1. INTRODUCTION 

The Lie algebras have become an interesting subject in both mathematics and physics. This theory has 
undergone a remarkable evolution during the last years. The notion of of Lie p-algebra was introduced by 
Nathan Jacobson, [5], without devoted(awarded) a special study. It is well known that restricted Lie algebras 
have played an important role in the classification of the finite-dimensional modular simple Lie algebras.  

The theory of the Frattini subgroup of a group is well advanced and has proved useful in the study of 
certain types of problems in the group theory. Analogous problems for algebras can be posed, and these are 
of independent interest. It therefore seems desirable to investigate the possibility of establishing a parallel 
theory for algebras. The many close connections which Lie algebras have with groups render them the 
obvious choice for a first attempt at an analogous theory, and such investigations have been successfully 
carried out by Barnes and Gastineau-Hills, Hochschild, Reutenauer, Roggenkamp, Schue, Winter, et al. ([1], 
[4], [9], [10], [11], [15]). 

Although the corresponding concept of the Frattini subalgebra of a Lie algebra has been widely 
recognized, so far there has not been developed a theory of the Frattini subalgebra analogous to that of the 
Frattini subgroup.  
 

In this section, we recall some notions and properties necessary in the paper. Throughout L will denote 
a finite dimensional Lie algebra over a field K.  

     
Definition 1.1. A Lie p-algebra is a Lie algebra L, over a field K of characteristic p>0, with a p-map 

a→ap, such that: 
 (αx)p  = αpxp , for all α∈K,x∈L 
 x(adyp)=x(ady)p,for all, x,y∈L, and     

 (x+y)p=xp+yp+ for all x,y),(
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 where isi(x,y) is the coefficient of  in the expansion of x(ad(1−iλ λ x+y))p-1.                                            
 A Lie subalgebra  (respectively, Lie ideal)  of L is a Lie p-subalgebra (respectively, a Lie p-ideal) if it 

is closed under the p-map.   
The notions of maximal Lie p-subalgebra respectively maximal Lie p-ideal of L are defined as 

usual.The intersection of Lie p-subalgebras   (respectively Lie p-ideals) is a Lie p-subalgebra (respectively a 
Lie p-ideal) of L. 
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We denote by Φp(L) the Lie p-subalgebra of L obtained by intersecting all maximal Lie p-subalgebras 
of L and we call it the Frattini p-subalgebra of L. 

The largest Lie p-ideal of L included into Φp(L) is called the Frattini p-ideal and is denoted by Fp(L).     
These are the corresponding notions to the Frattini subalgebra Φ(L) and the Frattini ideal F(L) for a Lie 

algebra.    
We shall use the following notations:  
 [x,y] is the product of x,y in L;  
 L⁽¹⁾ the derived algebra of L;     
  L(n) = (L(n-1))(1),  for all n≥2;     
 (A) is the subalgebra generated by the subset A of L;    
(A)p= ({x  | x  (A), n∈N}), where x = (x )p;     

np ∈
np 1−np

Ap= ({xp | x∈A}), where A is a subalgebra of L;  
 A = (A )p;   

np 1−np

 Z(L) is the center of L;    
 N(L) is the nilradical of L;     
 Note that, if L is a p-algebra (finit dimensional), then Z(L) is closed as p-ideal of L. 
 The reader can consult for instance [2], [3], [5]- [8], [12]-[14] 

2. LIE P -ALGEBRAS WHICH ARE F P-FREE 

A particular case of Lemma 3.1 [6] is the following result  
    
 Proposition 2.1. If L is a finite dimensional Lie algebra over a field K, then   
                                                         L⁽ ¹⁾ ∩Z(L)  F(L).    ⊆
 
In [8], Lincoln and Towers have proved the following                                                                  
 
Lemma 2.2. If L is a finite dimensional Lie p-algebra over a field K, then we have 
                                                            (L⁽ ¹⁾)p∩Z(L) ⊆Fp(L).                                                                    
 
The abelian socle S(L) is the sum of all minimal abelian Lie ideals of L.    
We may define the abelian p-socle of the finite dimensional Lie p-algebra L as being the sum of all 

minimal abelian Lie p-ideals of L and we denote it by Sp(L). 
    
 The abelian socle (respectively, the abelian p-socle) of a finite dimensional Lie (p-) algebra is a Lie 

ideal (a Lie p-ideal) of L, as one can show easily.  
 
Definition 2.3. Let L be a finite dimensional Lie p-algebra and I be a Lie p-ideal of L. We say that L p-

splits over I if there exist a Lie p-subalgebra A of L such that L=I
.
+ A. A is called a p-complement of the p-

ideal I.  
In these hypothesis the following statements are true.                                                                                                     
 
Theorem 2.4.[8] Let L be a finite dimensional Lie p-algebra such that L⁽ ¹⁾≠0 and L⁽ ¹⁾ is nilpotent. 

Then the following statements are equivalent: 
    (i) Fp(L)=0. 
    (ii) Sp(L)=N(L), and L p-splits over N(L). 
    (iii) L⁽ ¹⁾ is abelian, (L⁽ ¹⁾)p=0, L p-splits over L⁽ ¹⁾⊕Z(L), and 

                        Sp(L)=L⁽ ¹⁾⊕Z(L).                                                                                                              



3 Some results on E-P-algebras 

 In the same hypotheses, the Cartan subalgebra of L is exactly those subalgebras which have L⁽¹⁾ as a p-
complement. 

It can be inferred that: 
Corollary 2.5. If L is a finite dimensional Lie p-algebra over K with L⁽ ¹⁾ nilpotent and nonzero, 

Fp(L)=0 and K is perfect, then the maximal toral subalgebras are precisely those having as p-complement   
L⁽ ¹⁾⊕Z(L).                                                                                                                                                            

 
Examples 2.6. We know which are the Lie algebras of dimension 2 over K, and we take L=I+V, where   

I = Kx+Ky,V = Ku1+Ku2, u1
 p = u2 

p = yp = 0, xp  = x,  
[V,V] = 0,[x,y] = 0,[x,u1] = u1,[x,u2] = u2,[y,u1] = u2,[y, u2] = 0. 
Then L⁽¹⁾=V is abelian,  (L⁽¹⁾)p = 0, Z(L) = 0.  Now, N(L) = Ky + Ku1 + Ku2.  Also Ku2 is a minimal p-

ideal. Let J be a minimal p-ideal contained in N(L). Since [N(L),N(L)]=Ku2, either J=K u2 or [N(L),J]=0. 
Suppose that J≠K u2. Then [y,J]=0 so J Ky+K u2, and [u1,J]=0 so J ⊆  Ku1 + Ku2. Thus J ⊆Ku2, a 
contradiction. Hence N(L)≠Sp(L).                                                                                                                       

⊆

In [12], E. L. Stitzinger has shown that, for any Lie algebra L over the arbitrary field K, such that L⁽¹⁾ is 
nilpotent, L is F-free (that is F(L)=0) if and only if each subalgebra of L is F-free.    

The complete analogue of this result does not hold if F(L) is replaced by Fp(L). In this respect we give 
an example.  

 
         Example 2.7. Taking L=Kx+Ky+Ku1+Ku2 with K=Z2, 
x²=x, y²=x+y, [x, u1] = u1,[x, u2]= u2,[b, u1]= u2,[b, u2]= u1 + u2 
[x,y]=[ u1, u2]=0, u1

2 = u2² = 0, and I = Kx + Ky we get F0(L) = 0 
where as Fp(I)=Kx.                                                                                                                                     
 
However some partial results can be obtained in this direction as we can deduce from the following 

result.    
 
Theorem 2.8.[8] Let L be a finite-dimensional Lie p-algebra. Then the following statements are 

equivalent: 
i) L⁽ ¹⁾ is nilpotent and Fp(L)=0; 

ii) L = I  A where A is an abelian Lie subalgebra, I is an abelian Lie p-ideal, the (adjoint) action of 
A on I is faithful and completely reducible, Z(L) is completely reducible under the p-map, and the p-map is 
trivial on [A,I].                                                                                                                                                               

.
+

 
Corollary 2.9. Let L be a finite dimensional Lie p-algebra with L⁽ ¹⁾ nilpotent and Fp(L) = 0. We claim 

that the following assertion are true:  
i) If A is a Lie p-subalgebra of L containing Sp(L), then Fp(A)=0.                                                                                  

         ii) If J is a Lie ideal of L, then Fp(J)=0.                                                                                                                            

3.THE RELATIONSHIP BETWEEN E-ALGEBRAS AND E- p -ALGEBRAS 

Definition 3.1. A finite dimensional Lie algebra (respectively Lie p-algebra), L, is called elementary 
(respectively p-elementary),  if F(A)=0 (respectively Fp(A)=0) for every Lie subalgebra (respectively Lie p-
subalgebra) A of L.                                                                                                                                               

Corollary 3.2.[8] Assume L is a finite dimensional Lie p-algebra with nilpotent L⁽ ¹⁾ and Fp(L)=0. Let 

L=Sp(L)  A as in Theorem 2.8 (ii). Then L is p-elementary, if and only if A=Sp(A).                                     
.
+
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Lemma 3.3. Let L be a finite dimensional Lie p-algebra over an algebraically closed field K of 
characteristic p>0, and suppose that L(1) is nilpotent. Then L is p-elementary, if and only if Fp(L) = 0. 

Proof. Suppose that Fp(L) = 0 and write L = Sp(L) 
.
+ A as in Theorem 2.8 (ii). Then A has a  faithful 

completely reducible representation on Sp(L) which is equivalent to the fact that A has non-zero nil ideals 
[11]. As A is abelian this is equivalent to the injectivity of the p-map. Since K is algebraically closed, this is 
equivalent to Sp(A) = A. Now it follows from Corollary 3.2. that L is p-elementary. The reverse assertion is 
immediately.    

                                                                            
Definition 3.4. We say that a finite dimensional Lie algebra (respectively Lie p-algebra), L, is an E-

algebra (respectively, E-p-algebra) if for every Lie subalgebra (respectively, Lie p-subalgebra) U of L we 
have F(U)  F(L) (respectively, Fp(U)  Fp(L)) ⊆ ⊆

Now here is available one version of Theorem I.4.2 [Ci] which we presents bellow. 
 
Theorem 3.5. If L is a finite dimensional Lie p-algebra, then L is an E-p-algebra, if and only if 

L/Fp(L)is p-elementary. 
 
Proof.  Suppose that L is an E-p-algebra, and let U/Fp(L) be a subalgebra of L/Fp(L). We choose a p-

subalgebra m of L which is minimal with respect to Fp(L) + m = U( so m could be U because we know by [2] 
that so  and m=U). Let I be a p-ideal of U such that I/ Fp(L) = 
Fp(U/ Fp(L)), and we suppose that I  Fp(L).  

)()()( LFmFmLF ppp ⊆⊆∩
≠

mLFp ⊆)(

Then I = I ∩  U = I ∩  (Fp(L) + m) = Fp(L) + I   m and I  m ∩ ∩ ⊄  Fp(L). 
 It follows that I ∩  m  Fp(m) since L is an E-p-algebra. But I  m is a p-ideal of m, so I  m ⊄ ∩ ∩ ⊄  Φp(m). 
Hence there is a maximal p-subalgebra M of m such that I ∩  m ⊄  M, and m = I  m + M.  ∩

By the minimality of m, we have Fp(L) + M ≠  U. We claim that Fp(L) + M is a maximal p-subalgebra 
of U. Suppose that Fp(L) + M ⊂  J  U. Than M  J  m  m and so by the maximality of M,                  
J  m = M or J ∩  m = m. 

⊂ ⊆ ∩ ⊆
∩

The statement J ∩  m = M implies that Fp(L) + M = Fp(L) + J  m = J  (Fp(L) + m) = J U = J, a 
contradiction. 

∩ ∩ ∩

The second statement, J  m = m implies m ⊆ J and hence J ∩ ⊇  Fp(L) + m = U, also a contradiction. 
From that results the maximality of Fp(L) + M in U.  

Thus (Fp(L) + M)/ Fp(L)  Fp(U/ Fp(L)) = I/ Fp(L), and so I  Fp(L) + M.  ⊇ ⊆
But I ∩  m ⊆  Fp(L) + M and so U = Fp(L) + m = Fp(L) + I ∩  m + M = Fp(L) + M, contradicting the 

minimality of m. We conclude that I = Fp(L), whence Fp(U/ Fp(L)) = 0 and L/Fp(L) is p-elementary. 
Conversely, suppose that L/Fp(L) is p-elementary. Let U be a p-subalgebra of L.  
Then (Fp(U) + Fp(L))/ Fp(L) ⊆  Fp((U + Fp(L))/ Fp(L)) = 0, and so Fp(U)  Fp(L).                                                        ⊆
 
Corollary 3.6.  Let L be a finite dimensional Lie p-algebra over an algebraically closed field K of 

characteristic p >  0, and suppose that  L⁽ ¹⁾ is nilpotent. Then L is a E-p-algebra.                             

Proof. Because L⁽¹⁾ is nilpotent we have Fp(L) = 0. Now from Corollary 3.2. and Theorem 3.5 results 
the fact that L is a E-p-algebra.                                                                                                                            

 
After following Theorem we finish by presenting the relationship between elementary and p- 

elementary Lie p-algebras (respectively E-algebras and E-p-algebras relationship) exposed by Theorem 3.8 
below.  

 
Theorem 3.7.   Let L be a finite dimensional Lie p-algebra and A a subalgebra of L. Then: 

(i) F(A) ⊆  F((A)p); 
(ii) If L is nilpotent, then F(A) ⊆  Fp(L) ⇒ F(A) ⊆  F(L). 

 



5 Some results on E-P-algebras 

Proof.  (i) Let M be a maximal subalgebra of (A)p, and suppose that  F(A) ⊄ M. Then (A)p = M + F(A), 
and so A = M ∩  A + F(A) = M  A, these from the fact that L is a Lie p-algebra, B a Lie p-subalgebra of L 
and B+F(L)=B we have B=L (see for these [2]. From these A  M and so F(A) ⊆  M, contrary to our 
assumption. Thus F(A) ⊆  Φ((A)p), whence F(A)  F((A)p). 

∩
⊆

⊆
Suppose that F(A)  Fp(L) and let M be a maximal subalgebra of L such that F(A) ⊄ M. We know that L is 
nilpotent if and only if . On the other hand, since L is nilpotent we have F(L)=[L,L]. But now 
F(A)=  which is a contradiction. Hence F(A) F(L). 

⊆

A]

)1()( LL =Φ
LFLL = (],[ MAA ⊆⊆=Φ ),[)( ⊆

If L is a Lie p-algebra, F(L) and F(A) ⊆  F(L) ⇒  F(A) .                                                 )(LFp⊆ )(LFp⊆
 

Theorem 3.8.  Let L be a finite dimensional Lie p-algebra. Then: 
(i) If L is p-elementary then L is elementary; 
(ii) If L is an E-p-algebra, then L is an E-algebra. 
 

Proof.  (i) Let L be a Lie p-algebra, p-elementary and let U be a subalgebra of L. We have F(U)  
F((U)p) and F((U)p)⊆  Fp((U)p). Thus F(U)  F((U)p)  Fp((U)p) = 0 since L is p-elementary. So L is 
elementary. 

⊆
⊆ ⊆

(ii) Let L be an E-p-algebra and let U be a subalgebra of L. Then by mens of (1), we have F(U)  
F((U)p)  Fp((U)p)  Fp(L) since L is an E-p-algebra, i.e., F(U)  Fp(L). So F(U)  F(L) in the light of 
the Theorem 3.7. (2), that is, L is an E-algebra.                                                                                                                        

⊆
⊆ ⊆ ⊆ ⊆
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