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A torsional nano-pendulum based on a single molecule suspended on a carbon nanotube with a single 
wall is considering in this paper. The molecule is rotated, resulting in large elastic torsional 
deformations of the nanotube. The motion equation of this system leads to the sine-Gordon equation. 
The closed solutions of the sine-Gordon equation, which are expressed in terms of Jacobi elliptic 
functions (cnoidal solutions) are analyzed by applying the variable separation method.  
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1. INTRODUCTION 

Eliminating vibrations and controlling dynamics in nano-world are subjects must address to 
applications in nano-electromechanical structures. One of the major obstacles to miniaturization and to build 
useful micro- and nano-sized devices involves changes to mechanical properties that can occur as the size of 
a system are below the macroscale toward the atomic scale. Mechanical devices with molecular-scale 
components are potential building blocks for nanoelectromechanical systems and may also serve as sensors 
or actuators (Meyer, Paillet and Roth [1]). 

An interested point of view with respect to mechanical behavior of molecular scale devices is presented 
by Ortega and Spong in [2]. The dynamical systems are viewed as energy transformation systems which 
require shaping of the total energy to globally stabilize the motion. The idea of energy shaping has the root in 
the control of robots, where controllers are derived with simple potential energy shaping (Takegaki and 
Arimoto [3]). For nanoscopic scales, the quasi-continuum method can be applied as an approximation theory 
to atomistic, which reduces to the exact atomistic theory when all the atomic degrees of freedom are 
considered (Chiroiu et al. [4], Teodorescu et al. [5], Teodorescu, Chiroiu and Munteanu [6], Chiroiu et al. 
[7]). In this paper we study a torsional nano-pendulum consisted of a rotating molecule of mass M  
suspended on an individual single wall carbon nanotube. The carbon nanotube is used as a torsional spring 
for moving suspended molecule. Although the key motion-enabling element here is a single molecule from 
the carbon nanotube, the suspended molecule is large enough to be visible in an optical microscope. The 
suspended molecule is rotating by an electric field and as a result of the extremely small restoring force 
associated with the torsional deformation of molecules of carbon nanotube, unusually large oscillations are 
excited by the energy of the pendulum. 

The motion equation of this system leads to the sine-Gordon equation. The closed solutions of the sine-
Gordon equation, which are expressed in terms of Jacobi elliptic functions (cnoidal solutions) are analysed 
by applying the variable separation method.    
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2. MODEL 

Consider the problem of free torsional oscillations of a pendulum consisting of a molecule suspended 
from a carbon nanotube with a single wall (fig.1). A carbon nanotube is a cylindrical molecule composed of 
carbon atoms. A typical section of a single-walled carbon nanotube is illustrated in Fig.2, each node being a 
carbon atom and lines the chemical bonds (Ruoff, Qian and Liu [8]). Fig.2 represents a damaged carbon 
nanotube with missing atoms in a region of the wall (Belytschko et al. [9]). 

 
 Fig. 1. The model. 

 

 
 Fig. 2. A section through a carbon nanotube viewed from the side [7]. 

 
Fig. 3. A damaged carbon nanotube by missing atoms [8]. 

 
For the carbon nanotube the modified Morse potential function is used 
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where stretchE  is the bond energy due to bond stretch,  is the bond energy due to bond angle-bending, angleE
, , sD β k k and are constants,  is the length of the bond, a given constant and ϕ  is the current angle of 

the adjacent bond related to the standard deformation measure in molecular mechanics with  a given 
value. The restoring torque 

ϕ r 0r

0ϕ
Γ  exerted by suspended molecule when rotated through an angle  is assumed 

to be given by the linear relation , where k
θ

kθΓ = θ θ  is a constant called the torque constant of the molecule. 
If the angle made with the downward vertical by the pendulum is θ  then the angular velocity ω  is θ . The 
Newtonian equation of motion for nano-pendulum is 
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sinJ Mhgω= Γ − θ , (2.2)

where  is the torque spring, the second terms in the right-side represents the torque due to the gravity, Γ J is 
moment of inertia of pendulum, is the distance of the center of mass from the central axis, h g  the gravity 
acceleration constant. The torque due to the rotating molecule is given by kθ . To obtain a continuous model 
for pendulum, a limiting process is considered, by introducing new space and time variable  

Mhg xX
k Lθ

= ,  MhgT t
J

= , (2.3)

where  is the length of carbon nanotube.  The equation (2.2) is reduced to the sine-Gordon equation L
2 sin 0TT XX mθ − θ + θ = ,   (2.4)

with  
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We impose that the sine-Gordon equation (2.4) must admit a first integral for the Hamiltonian of the 
system   

stretch angleH E E E= + = , (2.5)

with E  given by (2.1). The sine-Gordon equation such as other evolution equations with solitonic behavior, 
admits infinitely many exact solutions and conservation laws (Dodd et al. [10], Drazin [11], Drazin and 
Johnson [12], Munteanu and Donescu [13]). The first conservation law is related to the symmetry group of 
the equations (2.4) and (2.1) and it is given by 

2 21
2 cos 1 ( )

2 x tH α
= α θ − + θ + θ . (2.6)

For new variables  and ( )m x vtξ = γ − + δ 2 2(1 ) 1−γ = − ν , the equation (2.4) becomes 

sinξξθ = θ . (2.7)

Multiplying the equation (2.7) by  and integrating, we have ξθ

2 cos Cξθ = − θ + . (2.8)

Assuming the boundary conditions of the form 0(mod 2 )θ→ π , the integration constant C  is zero and 
it results   
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or       

tan exp
4
θ
= ξ . (2.10)

It is easy to show from , s2sech tanhξξθ = − ξ ξ in 2sech tanhθ = − ξ ξ , that the solution of (2.10) is given 
by 

4arctan exp[ ( ) ]m x vtθ = γ − + δ , 2 2(1 ) 1−γ = − ν . (2.11)

The solution (2.11) represents a twist in the variable ( , )x tθ , which takes the system from one solution 
 to an adjacent solution with . We are interested in finding the cnoidal solutions of (2.4) 

expressed in Jacobi elliptic functions (Munteanu [14]). Consider the change of function (Hoenselaers and  
Micciché [15]). 

0θ = 2θ = π
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4arctan dθ = . (2.12)

Substituting (2.12) into (2.4) for  we obtain 1m =
2 2 2 2( )(1 ) 2 ( ) ( 1)xx tt x td d d d d d d d− + − − + − = 0 . (2.13)

Applying the variable separation method, we set ( )( , )
( )

a xd x t
b t

=  and denoting  and , 

equation (2.13) is rewritten as 

2 ( )xa A a= 2 ( )tb B b=

 2 2 2 2( )( ) 2 ( ) ( )a ba b bA aB ab A B ab a b 0+ − − + + + = . (2.14)

It is easy to show that (2.14) is verified only and if only the followings equations are verified 
2 4 2

1 2xa c a c a c3= + + ,  2 4 2
1 2( 1)tb c a c a 3c= − + − − , (2.15)

where ,  are arbitrary constants. We recognize in (2.15) the Weierstrass equations with 
polynomials of fourth degrees.  The boundary conditions and initial conditions on  require that the function 

 satisfies the conditions 

ic 1,2,3i =
θ

a

0(0)a a= , , 1(0) ( )x xa a L= = a 0(0)b b= ,  1(0)tb b= . 
If either or  vanishes, the solution becomes one of the two-soliton solutions (Munteanu [14], 

Chiroiu et al. [16], Munteanu et al. [17]). We consider that neither nor  is zero. In this case the solutions 
are represented by cnoidal functions. The Hamiltonian (2.6) takes the form 
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We mention that the Hamiltonian does not distinguish between soliton and antisolitons (Hoenselaers 
and Micciché [15]). The form of  and b  are determined by the zeros of the equations a

4 2
1 2c a c a c+ + 3

4 2
1 2( 1)c a c a c, − + − − . 

These equations can have four real zeros, two real and two purely imaginary zeros, four purely 
imaginary zeros or four complex zeros ( ).  1 1c =

3. RESULTS 

In all simulations, the dimensionless space 0 1x≤ ≤  and time 0 1t≤ ≤  variables are used. Consider a 

single-walled nanotube of ( 0 ) length, with a diameter of  satisfying0.58μmL = 6 m−.58 10× td 10
t

L
d

= . The 

moment inertia with respect to the tube axis is . Others parameters of carbon nanotube are 
, ,β = ,

307 10−= ×
10 -110 m

2kgm

0 2.
J

2.63×10
0 1.39 10 mr −= × 193 10 Nm−= ×6.0D 09radθ = , and 

. The molecule is modelled as a rigid sphere of diameter  given by

180−3 1 Nm/radkϕ = ×

-40.75radsk = bd 5bd
=

2

td
.  The mass ration 

of the wire carbon nanotube to the molecule is 3. Plots are made for two cases: 
Case 1  Four real zeros for xa 2

tb
2

 and four imaginary zeros for (fig.4); 
Case 2  Four imaginary zeros for xa 2

tb (and two real and two imaginary zeros for  (fig.5). 
The both cases correspond to two-soliton solutions (Munteanu and Donescu [13]). The first case 

displays a train of solitons moving to the right while the antisolitons move to the left, or vice versa. The 
second case consists of two solitons interaction. 
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Fig. 4  The interaction between a soliton and a antisoliton (case 1). 

 
Fig. 5  The interaction between two solitons (case 2). 

 
The torsional pendulum built on a single wall carbon nanotube can be turned by extremely small 

forces. For a rotation of1 , a torque of  is necessary. More interesting is the possibility that the 
nanotube itself could be used to sense the deformation, because a torsional deformation is expected to change 
the electronic structure of the tube (Meyer, Paillet and Roth [1]). The resonance frequency for torsional 

oscillations is calculated to be

206 10 Nm−×

1
2

f
π

0.1MHz
k
J
ϕ= ≈ . Next we consider that the nanotube is damaged by 

missing of some atoms in a portion of the wall (fig. 3). In this case, free decay oscillations of the system are 
observed. Its equilibrium position is shifting during oscillations. After oscillations died out, the equilibrium 
position remains shifted. 

4. CONCLUSIONS 

We have studied a torsional pendulum consisted from a single-walled carbon nanotube, which is used 
as a torsional spring for rotating suspended molecule. It results large but fully elastic torsional deformations 
of the nanotube. As a result of the extremely small restoring force associated with the torsional deformation 
of a single molecule of the carbon nanotube, unusually large oscillations are excited by the energy of the 
pendulum. Mechanical devices with molecular-scale components are potential building blocks for 
nanoelectromechanical systems and may also serve as sensors or actuators. 
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