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This paper presents a general method to obtain the mathematical model for the elasto-dynamic 
behavior of the multi-body branched systems developed in the welcoming frame of the 
Computational Mechanics. This particular class of multi-body systems generally named branched 
systems refers to the mechanical systems with a number of branches activated and controlled by the 
driving links of a common driver, taking into consideration the flexibility of the elements (the "rigid 
body system" assumption does not hold). The method allows us to consider the essentially nonlinear 
position functions of the driver mechanisms (one in each branch) in their real form, without any 
linearization. So, the achieved mathematical model is a system of second order nonlinear differential 
equations with non-constant coefficients. As the mathematical model is achieved in a symbolic form,  
it serves all the targets as an analytic one, but it is obtained for any number of branches (and, by 
consequence, for any number of degrees of freedom). 
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1. INTRODUCTION 

In modern technological processes, the increasing operating velocities of the equipment and the 
increasing dynamic loads on the mechanisms that accompany development and perfection of the machinery, 
accentuated essentially the role of the design for dynamics and, therefore, the roles of the elasto-dynamic 
behavior and the vibroactivity have thus emerged. For real multi-body systems requiring a large number of 
components and essentially nonlinear transfer functions, the study of the elasto-dynamic behavior highly 
grows in complexity. So, the demand for analyzing their dynamical behavior to a high accuracy in 
translational and rotational degrees of freedom taking into consideration the nonlinear kinematics became a 
challenging task. As this objective puts serious problems to the dynamicist, the theoretical mathematician 
and the numerical mathematician as well, the Computational Mechanics seems to be a suitable frame for it.  

 
Fig. 1.1  A general scheme of an n-BM. 
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In this welcoming frame, we developed a new computer-aided (CA) way to analysis and synthesis of a 
particular (but, large) class of multi-body systems from the elasto-dynamic point of view. Basically, the 
method allows us to obtain the mathematical model (in symbolic or numeric form) for any mechanical 
system that can be described as a combination of branched systems with variable number of branches.   

This particular class of multi-body systems can be named, generally, „branched systems” - where the 
term refers to mechanical systems with a number of branches activated and controlled by the driving links of 
a common driver, taking into consideration the flexibility of the elements (the "rigid body system" 
assumption does not hold); a general scheme is shown in Fig. 1.1. We’ll use the notation “n-BM” to denote a 
multi-body branched system with n branches. It is obvious that an immediate application can be any system 
with a camshaft driver. For example, the camshaft from Fig.1.2 can be the driver for a 16-BM and it will be 
used in the study case from section 5. 

The method has been developed in the general assumptions frame of flexible multi-body systems 
dynamics. In this paper we refer explicitly to the following two assumptions: 

(i) The damping assumption: the friction is proportional to the relative speed between two neighboring 
inertial bodies; the energy dissipation in the elastic elements is proportional to the relative speed of the 
masses connected by the element. So, the damping coefficientׁis defined by , when  are 
related by the classic linear motion equation for one degree of freedom and ζ  is the 
viscous damping factor. 

2= ζb mc , ,m b c
0′′ ′+ + =my by cy

(ii) The bending assumption: the bending deflection is defined as the vertical (only) displacement of the 
neutral axis of the deformed beam [3]. 
 

 
Fig. 1.2  Camshaft for a 16-BM 

The paper starts by a presentation of the main terms and definitions introduced in this work: vibratory 
element, dynamic model and descriptor matrix of an n-BM, followed by a concise description of the 
mathematical model for the elasto-dynamic behavior of the multi-body branched systems and a short 
presentation of the software algorithm. Since the mathematical model is achieved in a symbolic form, it 
serves to a very large suite of further important results in analysis and synthesis of the studied n-BM. The 
last section presents a 16-BM as a study case and exemplifies some results. 

2.  TERMS AND DEFINITIONS 

In this work, new terms, definitions and concepts have been introduced. In the following subsections, the 
main terms are presented.  

2.1 Vibratory element  

The vibratory element [7, 4] is a generic name for a mechanical item that provides all the necessary 
information to describe the punctual dynamical behavior by three components (see, Fig. 2.1): a kinematical 
one - ; an inertial one-Π J or ; a deformability one -  (optionally with damping, b ). The type and 
dimension of the inertial and deformability components are to be chosen according to the motion (see, [4] 
section 3.2.2). The kinematical properties in a certain point are represented by the kinematical analog (often 
called the position function) that describes the kinematical ratio between adjacent elements if such a ratio 
differs from 1. After [1, 6], the following notations are used: 

m c

Π

x   -  the input motion, which can be either linear or angular; 
s   -  the output motion, which also can be either linear or angular; 

      - the position function that relates the velocities of the driving and driven members: 
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Fig. 2.1   Vibratory element’s forms.  

In our view, a vibratory element can contain only one of each of the inertial, elastic and kinematical 
components, but not necessarily all three of them. It means that the vibratory element remains defined (see, 
[5, 1, 4]) even in the absence of one or even two of its components.  In Fig. 2.1, the vibratory element’s 
forms are shown. 

2.2 Dynamic Model 

Generally, every specific system can be described either as a continuous model or as a lumped model 
with a single or a finite number of concentrated masses.  In this work, the lumped model has been 
considered.  

Under the assumption that the n-MB develops 
only rotation and translational motion and the main 
shaft driver undergoes bending (according to 
assumption ii/ section 1), the dynamical model can be 
represented as a series and/or parallel connection of 
vibratory elements from four subsystems.  

Fig. 2.3 A general scheme of the dynamic model of 
an n-BM that contains only vibratory elements from  

subsystems S1-S4. 
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Fig. 2.2  Dynamic model of a typical branch. 
Important to observe that, in each subsystem, the 

same equation of motion is respected:  

s s s s s s s[M ]q +[B ]q +[C ]q = F  (2.1)

where s=1,4  is the subsystem number.  
 The subsystems S1 and S4 deal with the driver (which serves as a programming tool for the whole 

system), which undergoes mainly torsion and bending deformations [1, 2] and vibrations. The subsystems S2 
and S3 deal with the branches- each branch representing a chain of mechanical elements (for details, see [1, 
4]). 

A real system can lead to a dynamic model that contains more than one vibratory element in a branch, on 
one hand, and, on the other hand, not all the subsystems S1-S4 are necessarily present. Therefore, we 
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introduced the term “typical branch” to indicate a branch composed by four vibratory elements - one from 
each subsystem S1-S4 (Fig. 2.2). Now, the dynamic model of an n-BM can be redefined as a series 
connection of typical and/or atypical branches. Fig. 2.3 presents a general scheme of the dynamic model of 
an n-BM that contains only vibratory elements from subsystems S1-S4.  

2.3 Descriptor matrix 

In order to automatically generate a matrix form of the equations of motion of an n-BM, we introduced a 
matrix description. Named the descriptor matrix of an n-BM, it describes in a symbolic way the dynamic 
model defined above: each column of the descriptor matrix describes a branch of the n-BM and each row, a 
subsystem. The component kj of the descriptor matrix represents the number of vibratory elements from the 
subsystem k that exist in the branch j-1. If each branch contains, at most, one vibratory element from each 
subsystem, then a single descriptor matrix, DE , is used: kjDE  is 1, if in the branch j-1 exists a vibratory 
element from subsystem k, and 0 if otherwise. The first column of DE always describes the motor as a 
vibratory element of subsystem S1. For computation reasons, if the subsystem S3 is not used in the dynamic 
model, the third row of DE must be a zero-row ( 3 0=jDE , j=1, n+1; see, for example, the columns (a) and 
(b) in Table 1). In the case of a dynamic model with more than one main mass in at least one driven branch 
(for example, the column (e) in Table 1), a second descriptor matrix, MVE , is needed. The components of 
the second row of the descriptor matrix DE express, now, the number of main masses that exist in each 
branch. For example, see, the column (e) in Table 1 and application from section 5 (for details, see [4]).  

Table 1  Descriptor matrix of a 2-BM. 

 (a) (b) (c) (d) (e) 
additional 
elements 

- - + + Two main masses in  
branch 2 

bending - + - + DE MVE 
 1 1 1⎡ ⎤

⎢ ⎥0 1 1

0 0 0
⎢ ⎥
⎢ ⎥⎣ ⎦ 0 0 0

0 1 1

⎢ ⎥
⎢ ⎥
⎣ ⎦

0 1 1

0 1 1

 
1 1 1

0 1 1
⎡ ⎤
⎢ ⎥
⎢ ⎥  

1 1 1⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦ 0 1 1

0 1 1

 
1 1 1
0 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥

⎣ ⎢ ⎥
⎢ ⎥

⎦

0 2 1

0 0 1
 

1 1 1⎡ ⎤
⎢ ⎥

⎣

⎢ ⎥
⎢ ⎥⎦ 0 1 0

0 1 0⎢ ⎥
⎣ ⎦

 
1 1 1
0 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

 
⎣

3  MATHEMATICAL MODEL   

Let us remember two facts that have been already discussed. 
1) Each one of the subsystems S1-S4 describes a simple loading case —torsion, bending or compression-

extension; the mathematical model for each one of them has the same form written in the same matrix form: 
equation (2.1).   

2) The dynamic model of an n-BM is, after section 2.2, a collection of vibratory elements from 
subsystems S1-S4.  

 Thus, it is natural to look for the same matrix form for the mathematical model of the entire n-BM. So,  

[M]q +[B]q + = F

q
F M

B C

 (3.1)[C]q

is the matrix form for the mathematical model of an n-BM and Ndof  is the number of DOF;  Ndof =n1+ 
n2+ n3+ n4 ,  where  nk is the number of vibratory elements from subsystem Sk;  is the generalized 
coordinates vector;  is the generalized forces vector; is the global inertia matrix; C  is the global stiffness 
matrix; is the global damping matrix that is deduced from  according to assumption i/section 1. The 
dimension of the global vectors and the global square matrices is Ndof.   

Due to the nonlinearities of the kinematical analog (often called the position function) of the driver 
mechanisms (one in each branch), the global generalized forces vector contains the generalized coordinates 
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and/or their first and second derivatives. Moving all these terms on the same side of (3.1), the matrix form of 
the mathematical model is 

[Mj]q +[Mb]q +[Mc]q = Feq  (3.2)

 Now, the global matrices are not symmetrical. The force vector is: , andMj Mb Mc Feq

1eqF = M0t   

keq = λ Πk kF  2 ≤ k ≤ n1+1 

1n +1+keq ( )′ ′= − Π + Π + Π +k k k k k k km b c gF        1 ≤ k ≤ n2 (3.3)

n1+n2+k+1eq = − Πk kmaF  1 ≤ k ≤ n3 

1 2 3n +n +n +1+keq 0=F        1 ≤ k ≤ n4 
where M0t represents the motor torque.  

4. SHORT PRESENTATION OF THE SOFTWARE ALGORITHM 

In order to study the elasto-dynamic behavior of an n-BM using our method, we developed a complex 
and performing software [1, 4, 5, 6] able to generate the mathematical model for elasto-dynamic behavior of 
multi-body branched systems. Since, at that moment, only Mathematica® [8] was able to develop symbolic 
calculus, we developed a Mathematica-based software for this method. A general flow-chart of it can be seen 
in Fig. 4.1. According to the descriptor matrix MDE  (and VE

, ,q F
Mj

, if it is needed) received as the input data, the 
program proceeds as follows: 
• computes the current number of generalized coordinates of each vibratory element in the dynamic 

model;  
• organizes the generalized coordinates vector, the global force vector and the global matrices 

, ,s s sB C  for each subsystem S1-S4 that appear in Eq. (2.1); , ,s sq F M
• organizes the global generalized coordinates vector,  the global force vector and the global matrices  

, ,M B C  that appear in Eq. (3.1); 
• computes the global vector Feq after Eq. (3.3) and the global matrices , ,Mb Mc  that appear in Eq. 

(3.2) representing the matrix form of the mathematical model of the studied branched system; 
• stores a symbolic form of the mathematical model. 

 
 
 
 
 

Fig. 4.1 The flow-chart.  

 
 
 
 
 
 
 
 

If the analysis of the studied n-BM is the target, the numerical requested data are introduced and the 
obtained mathematical model is solved. Once the mathematical model is solved, a very rich set of results can 
be obtained:  
• the dynamic perturbations (the dynamically perturbed speeds and also the dynamically perturbed 

accelerations) for each inertial point in numeric and/or graphic form (see, figs. 5.2-5.5); 
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• the main characteristics of the solution (that are established on the beginning);  
• the main frequency; 
• the stability information. 
The performance conditions can be checked, as well. 

If the synthesis of the studied n-BM is the target, the saved symbolic matrix form of the mathematical 
model serves as a start point to another Mathematica® based software developed to do an optimal synthesis 
based on “the State Matrix Strategy- a quasi-optimization tool” [1, 2, 3, 5]. 

5.  STUDY CASE 

Let us consider, as an example, the 16-BM with the main shaft driver shown in Fig. 1.2; all the branches 
are typical (see, Fig. 2.2).  The descriptor matrix DE

0, 2 17, 1
is a 17x17 matrix with unit components except for the 

first column that represents the motor ( D = = − =ijE i j 1and =ijDE in rest). In order to take into 
consideration the bending of the main shaft, the influence coefficients are to be known. We obtain the 
(16x16) influence coefficients matrix using our general computer-aided method especially developed to 
reach the influence coefficients for any statically determined or undetermined straight beams of a constant 
cross section, modeled as a p-lumped beam for all the combinations of loading and boundary conditions, 
unrelated of how big p is (see, [3]), modeling the shaft driver as a simply supported 16 masses lumped beam.  

According to DE, our software generates the 65 components of the global vectors and the (65x65) 
components of each global matrix and it composes, after (3.2) and (3.3), the symbolic form of the 
mathematical model of this16-BM. The computed mathematical model for this study case is a system of 65 
second order nonlinear differential equations with some non-constant coefficients. At user’s request, it is 
stored in a special file. For this study case, the complete symbolic mathematical model is stored in a 234KB 
file. Our software generates, also in a symbolic form, the dynamic matrix, the eigenvalues and the 
eigenvectors. These symbolic expressions allow us to study how the elasto-dynamic behavior of the system 
is influenced by any parameter or combination of parameters.  A very rich data base can be achieved by 
repeated running for a large number of variants of the model (the variants differ by design or value of one 

parameter at least). So, the increased capability to obtain, 
to save and to compare the results from a large number 
of cases synergistically combined with the 
Mathematica®[8] software symbolic calculus 
capabilities and the statistical representation of the 
results, allowed us to developed a tool for design 
optimization [2] that permits choosing the optimal 
combination of parameters for any predefined criteria. 5 10 15 20 25
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Fig. 5.1 The main shaft at torsion (S1 in Fig. 2.2) To any set of numerical input data, the mathematical 
model is solved and the solution can be analyzed by 
numerical, statistical or graphical tools. 

For example, for the position function of the driver mechanism shown in Fig. 5.1, the normalized 
dynamic perturbations and perturbed speeds obtained in each inertial point of the driven branch are shown in 
Figs. 5.2- 5.5; the notations from Fig. 2.2 are used here. 

 
Fig. 5.2 The main shaft at torsion (S1 in Fig. 2.2) 
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Fig. 5.3 The main mass (S2 in Fig. 2.2) 

 
Fig. 5.4 The additional mass (S3 in Fig. 2.2) 

 
Fig. 5.5 The main shaft at bending (S4 in Fig. 2.2) 

For each one of the 16 branches of the studied case, a set of information like Figs. 5.1-5.5 is available. 
For example, in Figs. 5.6 is presented the comparative data for 3 branches.   
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(a)  The main shaft at torsion (S1 in Fig. 2.2) 
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(b)  The main mass (S2 in Fig. 2.2) 
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(c)  The main shaft at bending (S4 in Fig. 2.2) 

Fig. 5.6  Comparative dynamic perturbations and perturbed speeds for 3 branches. 

CONCLUDING REMARKS 

In this work is presented a new CA method to study the elasto-dynamic behavior of the multi-bodies 
branched systems able to synthesize the matrix form of the mathematical model for a special kind of 
branched systems (n-BM) that can be represented by a special type of the dynamic model (section 2.2 and its 
descriptor matrix (section 2.3). The method allow us to consider the essentially nonlinear position functions 
of the driver mechanisms (one in each branch) in their real form, without any linearization unrelated of how 
big n is. 

Since the mathematical model is achieve in a symbolic form it serve to a very large suite of further 
important results in analysis and synthesis of the studied branched system, as well.  

Some results obtained for a 16-BM are presented in the last section. 
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