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In this paper we model one variable of the 2002/2003 French Health Survey (The Number of Visits to 
the Specialist in the last twelve months) in order to obtain sub national estimations (county and 
regional). We construct the model, we derive the theoretical estimations for the parameters of interest 
. Then we test the fit of the model to the data and after deciding that the model is good enough we 
compute the estimations and their precisions. We conclude the paper with some directions for future 
research 
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1. INTRODUCTION 

The French Health Survey (FHS) is a large survey (almost 30000 observations) taking place every ten 
years and collecting information on a large number of health variables (more than 200). The Direction de la 
Recherche, des Etudes, de l’Evaluation et des Statistiques (DREES) is responsible for the statistical 
exploitation of the FHS data. Part of its job is to obtain national estimations for some parameters linked to a 
series of FHS variables. In doing this DREES is helped by INSEE, the French Statistical Institute. INSEE 
computes these estimations by using its well established methodology based on the classical survey sampling 
theory. The classical survey sampling theory centres its inference on the survey sampling distribution which 
is generated by the survey design, the way the sample is selected.  

Recently there has been a growing demand for estimations at sub-national level. For instance, the 
French regional authorities are interested in estimating regional and county parameters (the French territory 
is divided into 22 regions, every region incorporating several counties, resulting in a total number of 95 
counties). Generally, the national surveys like FHS are designed to insure an adequate level of precision at 
national level. When it comes to regional/county parameters one can still use the classical survey sampling 
theory resulting in the same formulas for the estimators and their precisions as at the national level but using 
the regional/county samples. These samples are composed of the observations from the national survey that 
come from the region or the county of interest. For a lot of such sub populations called alternatively areas or 
domains these observations are not numerous. This is why they are called small areas or small domains. As a 
consequence the estimators based on the classical survey sampling theory called direct estimators have not 
an adequate level of precision and alternative methods should be used. 

To tackle this problem, authorities from five regions (see below) decided to spend more money to 
increase their regional sample size so that the regional estimations based on INSEE methodology be more 
precise. This resulted in approximately 10000 more individuals interviewed in the five regions. Using this 
additional sample INSEE computed and published national estimates plus five regional estimates together 
with their standard errors for a number of variables in FHS. However, these estimates now more precise due 
to the increased number of observations are still based on the INSEE methodology. 

The small area estimation is the new theory trying to improve the classical design-based survey 
sampling theory when it comes to estimations parameters at sub national levels. The key of the modern small 
area estimation is the modelling of the variable of interest population values and then using the model to 
make inference. The model acts like a link between observations coming from different areas of the 
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population. This is why when model-based an estimator for a sub population called indirect estimator uses 
the entire national sample, not only the sample coming from the sub population. Thus the indirect estimator 
is generally more precise than the direct estimator by borrowing strength from related areas. A detailed 
account of the small area estimation is given in Rao[3]. 

INSEE has not a methodology using small area estimation techniques. This is why DREES financed a 
research aimed at finding a small area methodology for regional and county parameters related to a number 
of variables in FHS. The results presented in this paper are part of this research. In section 2 we show how to 
construct a model which will be used to estimate the regional and county means for the study variable 
Number of Visits to the Specialist in the last twelve months coded as R04AM in FHS. In section 3 we test the 
fit of the model. In section 4 we obtain the theoretical formulas of the estimators and their standard errors. 
Then we use the theoretical formulas to compute the estimations and their standard errors. Finally, in the last 
section we draw some conclusions and specify directions for future research. 

2. COUNSTRUCTION OF THE MODEL 

 The variable R04AM is a count variable just as the variable R02AM - the Number of visits to the 
generalist in the last twelve months – for which we showed how to obtain regional estimations in Stefan[5]. 
The methodology for R04AM follow closely that for R02AM so in this paper we will not go into details 
preferring to underline the differences between the two variables instead. 

 First we undertook an exploratory analysis to see which are the variables R04AM depends on. We 
retained four variables: the Region, the Sex and the Age indexed respectively by i, s and k. The Region has 
22 values, the Sex has 2 values and the Age has 8 values because we transformed the Age from a continuous 
to a categorical variable with 8 values corresponding to the intervals [0,1], [2,12], [13,23], …[56,67] and 
[68,104]. We decided to drop the variable Stratum because its influence on the fit of the model as well as on 
the final results was found to be small. As in Stefan[5] l represents an individual. As a result the population 
individuals are cross classified in  cells with  being the value of R04AM for an individual l in 
cell (i, s, k). should then verify 

22 2 8× ×
( )isklE y

iskly

iskly iskμ≈  with iskμ  denoting the population mean of cell (i, s, k). 
R04AM is a count variable so we will use the Poisson distribution to model it meaning that 

Poisson( )iskly iskμ∼ . The Poisson distribution has its mean equal to its variance. We have to test if R04AM 
verify this condition. We computed the sample means and variances of the cells (i, s, k). Figure 1 represents 
the cell mean versus the cell variance. The solid line is of equation y x= . Most of the points are above it 
suggesting that the variance is larger than the mean. Such a situation is called over dispersion and is 
frequently met in practice. The second line is of equation 4.68y x= (we anticipated by plugging in the value 
4.68 which comes from the estimation of the model for R04AM presented later in this paper) which is a 
much closer approximation of the relationship between the variance and the mean of R04AM. Clearly, the 
Poisson distribution is not appropriate for R04AM and something has to be done to handle the over 
dispersion. We also had over dispersion in the data for the variable R02AM presented in Stefan[5] and refer 
the reader to that paper for a detailed account of the way we adopted to handle the over dispersion. We give 
here a short report. 

 If we don’t take into account the over dispersion than the resulting model will be like model 1 in 
Stefan[5]. The main idea is to take random the parameters iskμ  of Poisson( )iskμ . This is model 2 in Stefan[5] 
but we showed there that a far better model is model 3 achieved if we take isklμ  instead of iskμ . In Stefan[5] 
we compared the fit of the three models and concluded that model 3 presents a much better fit to the R02AM 
data than that of models 1 and 2. The same holds true for R04AM so we directly take model 3 as the model 
which we will use to get the regional estimations. The model bellow is model 3 for R02AM in Stefan[5]: 

Model for R02AM 

| ~ Poisson(iskl iskl isklind
y )ν ν , 

1

| , , ~ Gamma( ,
kappa kappa

isk isk
iskl isk ind

alpha kappa
alpha alpha
μ μ

ν μ
− −

) , 
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1 3 4log( )isk i s kμ β β β= + + , 
~ Unif(0,100)alpha , ~ Unif( 1,100)kappa − , 

1 ~ Unif( 10,10)iβ − , 3 ~ Unif( 10,10)sβ − , 4 ~ Unif( 10,10)kβ −  
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Figure 1. Cell mean versus cell variance of R04AM 

 
 The choice of the second line of the model is motivated by the relationship between mean and 

variance of R04AM that can be seen in Figure 1. It is of the same type than that for R02AM, that is 
. It can be proved (see Stefan[5]) that we can model this relationship by taking 1( ) kappa

iskl isk iskV y alphaμ μ += + ×

isklν  following Gamma distributions of parameters  and . So the model above 
should also work for R04AM. However, Figure 1 seems to indicate that in the case of R04AM kappa is zero. 
This is confirmed by estimating the model above with the data of R04AM (this was not the case for R02AM 
when kappa was estimated at 0.5). 

1 /kappa
isk alphaμ − /kappa

isk alphaμ−

 The third line is the usual link function for the mean of the Poisson distribution. We also tested the 
fit of a model with 1 3 4log( )isk i s k iskμ β β β ε= + + +  instead of 1 3 4log( )isk i s kμ β β β= + +  but the result was a 
model with approximately the same fit as the model above. Finally the last two lines are the a priori laws for 
the hyper parameters of the model. As for R02AM we took non informative uniform distributions with the 
intervals large enough to mark the absence of a priori information about these parameters. We also undertook 
a sensitivity analysis to the choice of the a priori laws but we found no evidence of influence on the final 
estimations confirming a well known fact that when the sample size is large the a priori information has little 
or no influence on the final results. Given what we discussed above the model for R04AM will be: 
 

Model for R04AM 
| ~ Poisson(iskl iskl isklind

y )ν ν , 

1| , ~ Gamma( , )isk
iskl isk ind

alpha
alpha alpha
μ

ν μ , 

1 3 4log( )isk i s kμ β β β= + + , 
~ Unif(0,100)alpha , 

1 ~ Unif( 10,10)iβ − , 3 ~ Unif( 10,10)sβ − , 4 ~ Unif( 10,10)kβ −  
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3. MODEL FIT 

 In the previous section we showed how to construct a model for R04AM. We now test the fit of this 
model to the data. We will use the sample without extension having 28259 observations and the same tools 
as in Stefan[5]. There are two categories of measures of fit: those that help selecting between several models 
and those telling if a model is good enough for making inference. In Stefan[5] the first measures were used 
to select between models 1, 2 and 3, the last measures to check if model 3 is good enough. For R04AM in 
order to use save space we will not show the numerical results of comparing models 1 and 2 to model 3 
because the same conclusions hold true for R04AM (model 3 or his adapted form for R04AM has a much 
better fit to the data than models 1 and 2) and because the comparison serves only to see the effect of not 
taking into account the over dispersion. We will focus on the question to see how good is the model above. 
In this section, for notation facility i designates an individual. 

 Let  be the vector of all the observations. One way in which a model fit can be tested is to 
generate for every individual i in the sample new observations  from the posterior predictive density 

 and to compare the vector of these new observations  to . It can be shown that a new 
value  can be sampled from  as follows: for each individual i we have the Markov chain 

obsy

)

i

,new iy

newy( |i obsf y y

,newy

{ }g
i

obsy
( | )i obsf y y

ν  corresponding to iν  obtained by estimating the model. After the burn-in period the values { }g
iν  come 

from ( if | )obsν y

)g

; we considered a burn-in period of 2000 iterations after which the chains reach convergence 
and used the next G=1000 iterations ; for each of the 1000 iterations we generated  by sampling ,

g
new iy

Poisson( iν . 
 An alternative distribution to generate new data is from the cross validation prediction densities 

denoted by  where  is the vector of all the observations except i. For an individual i 
 suggests what values of  are likely when the model is fitted to . Fortunately there is a way 

to sample  without having to rerun the Gibbs sampling for every  and then sample the 
corresponding posterior predictive density to generate new values as we showed above for . 
Under our model the algorithm is equivalent to the following: from each vector 

( )( | )i if y y

( )( | )i if y y

( )iy

( )( | )i if y y iy ( )iy

( )iy
( | )i obsf y y

( )g
i iν=ν  draw a sample 

with replacement and with probabilities proportional to ,1/ ( | )g
obs i if y ν  and let *

i
*( )g

iν=ν , g=1,…,G be the 
new vector; for each element *g

iν  sample a value  from *
,

g
new i Poisy * )g

ison(ν . The vector  will be 
composed of G values sampled from . 

*
,new iy

( )( | )i if y y
* In order to compare  to  and  we represented in Figure 2 their empirical distributions. obsy newy newy

 If the distribution of  is similar to that of  or obsy newy *
newy  than the model generates the same values 

as those actually observed and the conclusion is that the model is well fit to the data. In the literature  
was criticized as being unreliable because the values 

newy
g
iν  used to generate  come from fitting the model 

to the data, that is to . So  tends to resemble  even if we have a bad model. This is why it was 
proposed the vector 

,
g
new iy

obsy
*
new

newy obsy
y  whose components  were each generated from  not containing . In our 

case Figure 2 shows that distributions of  and  are almost the same and both of them are close to 
. This fact let us conclude that the model for R04AM is well fitted to the data. 

*
,new iy

w

( )iy iy

ney *
newy

obsy
 In Stefan[5] we also used some p-values based on two measures of discrepancy between  and : 

the Deviance and the Dis measure defined in Stefan[5]. The associated p-values are the probabilities 
 and respectively . A p-value close to 0.5 

indicates a good fit while extreme values close to 0 or 1 indicates a model poorly fit to the data. In Stefan[5] 
we explained how these p-values can be estimated. Under the adapted model for R04AM we obtained 0.46 
for  and 0.35 for  indicating again that 
the model is well adapted to the data. 

y ν

[Deviance( , ) Deviance( , )]new obsP ≥y ν y ν

[Deviance( , ) Deviance( ,new obsP ≥y ν y

[Dis( , ) Dis( , )]new obsP ≥y ν y ν

[Dis( , ) Dis( , )]new obsP ≥y ν y ν)]ν
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Figure 2. Distributions of ,  and  under the model for R04AM obsy newy *

newy
 

 In Stefan[5] we computed and used the standardized residuals defined as: 
, (

( )

( | )
( | )

obs i i i
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i i

y E y
r

V y
)−

=
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In Figure 3 we plotted the . We can notice that most of  are between -2 and 2 and that there is no 
particular pattern in the structure of . 
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Figure 3. The standardized residuals under the model for R04AM 
 
 
 



 Marius STEFAN 6 

4. PARAMETERS ESTIMATION 

 The parameters of interest are the regional means iμ , i=1,22 of the variable R04AM. We will use 
the principles of Bayesian statistics which consist of estimating a parameter by its posterior mean and the 
precision of this estimation by its posterior variance or standard error. Thus, our estimators will be 
ˆ ( | )i i obsEμ μ= y  and their variances ˆ( ) ( | )i i obsV Vμ μ= y . So the focus of the Bayesian statistics is the 

posterior distribution of a parameter that is the distribution of the parameter after the sample was selected. 
Generally this distribution cannot be obtained in a closed form but in order to have ( | )i obsE μ y  and 

( | )i obsV μ y  it is sufficient to get a sample from the posterior distribution. Then ( | )i obE sμ y  and ( |iV )obsμ y  
will be approximated by the sample mean and the sample variance respectively. The whole difficulty 
consists of finding a way to sample the posterior distribution. Generally and for a large number of models 
these samples called Markov chains are obtained by the Gibbs sampling or the Metropolis-Hastings 
algorithm. We will not go deeper into the Markov chains theory and the problems one has to deal with when 
working with Markov chains like initial values, convergence, burn-in period, number of iterations to use, 
Monte Carlo precision, an so on. A somewhat larger account is given in Stefan[5] and Stefan[4]. For more 
complete account there is Rao[3] or any other book about Bayesian statistics. 

 Using the well known Metropolis Hastings algorithm within Gibbs sampling (because some of the 
full conditional distributions resulting from the above hierarchical model for R04AM are known up to a 
constant) one can get Markov chains of any length for each parameter of the model. We will denote the 
elements of the chains by g

iskμ , , …with g=1,…,G. Then, each parameter can be estimated by the 
sample mean and the precision can be measured by the sample variance. But we are interested in

galpha

iμ  which 
are not part of the model so first we have find the link between the regional means and the parameters in the 
model. This is done in Stefan[5]. We present only the formulas for ˆiμ  and ˆ( )iV μ  which are given by: 

1 1ˆ [ (
i

g
i iskl isk isk isk

s k l obs g s ki

y N n
N G

) ]μ μ
∈

= + −∑∑ ∑ ∑∑∑  (1)

2

1 1 1ˆ( ) { ( ) ( )g g
i isk isk isk isk isk isk

g s k g s ki

V N n N n alpha
N G G

μ μ= − + −∑∑∑ ∑∑∑ gμ +  

2 21 1[ ( ) ] [ ( ) ]g g
isk isk isk isk isk isk

g s k g s k

N n N n
G G

μ μ+ − − −∑ ∑∑ ∑∑∑ }  
(2)

where  and iskn iskN  are the sample and population size of cell i s k× × , iN  is population size of region 
i, G is the length or the number of iterations to use after the chain reached convergence. If μ  is the R04AM 
France mean, then similar formulas to (1) and (2) can be obtained for μ̂  and ˆ)(V μ  by merely adding a sum 
indexed by i after  and by replacing 

s k
∑∑ iN  by the France population size denoted by N . iskN , iN  and N 

are those of the French 1999 census and were provided by INSEE. G was taken 6000 because we noticed 
that the Monte Carlo approximation was good enough for this number of iterations. The Markov chains 

 and galpha g
iskμ  of parameters  and alpha iskμ  were obtained by estimating the model using Metropolis-

Hastings algorithm within Gibbs sampling. The 22 regional estimations plus the estimation for the France 
mean together with their standard errors are given in Table 1. For the 5 regions with extra sample and the 
France mean there are also the INSEE estimations computed using INSEE methodology based on the 
sampling design. We also asked INSEE to compute and provide the other regions estimations but to the end 
of the research contract we didn’t get them so they are not reported in Table 1. 

 It is clear that the model based methodology is a good alternative to the INSEE sampling design: for 
all the 5 regions and the France the standard errors computed using the hierarchical model we constructed for 
R04AM are less than those computed by INSEE, so our estimators are better than INSEE’s. In Figure 4 we 
plotted the coefficients of variation versus regional sample size for our estimations represented by the solid 
black line as well as for INSEE estimations represented by the dotted blue line. We can see that our 
coefficients of variation are half those of INSEE. 
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Table 1: Regional estimations for R04AM based on the sample with extension (39900 observations) 

Region 
* = region with extension 

Estimation Standard Error 
 

Estimation 
INSEE 

Standard Error 
INSEE 

Ile de France* 2.30 0.0299 2.30 0.0540 
Champagne-Ardenne* 2.06 0.0508 1.90 0.0800 

Picardie* 1.98 0.0474 2.10 0.1440 
Haute-Normandie 2.05 0.0968   

Centre 1.97 0.0725   
Basse-Normandie 1.82 0.0893   

Bourgogne 1.88 0.0828   
Nord Pas de Calais* 1.78 0.0378 1.80 0.0600 

Loraine 2.08 0.0728   
Alsace 2.35 0.0939   

Franche Compté 1.97 0.0926   
Pays de la Loire 2.00 0.0588   

Bretagne 2.10 0.0674   
Poitou Charente 1.89 0.0823   

Aquitaine 2.27 0.0672   
Midi-Pyrénées 2.24 0.0809   

Limousin 1.67 0.1030   
Rhône Alpes 2.04 0.0507   

Auvergne 2.00 0.1059   
Languedoc-Roussillon 2.09 0.0784   

PACA* 2.36 0.0446 2.40 0.0760 
Corse 1.57 0.2254   

France Métropolitaine 2.10 0.0162 2.10 0.0280 
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Figure 4. Coefficient of variation versus size of the regional sample size 

 
 The model we constructed with slight modifications can be used to obtain county estimations. The 

index i designating the region is replaced by the index c which will designate a county. Thus we introduce a 
county effect in our model which will allow in the same way as above the estimation of county means cμ . 
The model for county estimation will be: 
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Model for counties 
| ~ Poisson(cskl cskl csklind

y )ν ν , 

1| , ~ Gamma( , )csk
cskl csk ind

alpha
alpha alpha
μ

ν μ , 

1 3 4log( )csk c s kμ β β β= + + , 
~ Unif(0,100)alpha , 

1 ~ Unif( 10,10)cβ − , 3 ~ Unif( 10,10)sβ − , 4 ~ Unif( 10,10)kβ −  
 

We tested the fit of the new model concluded that it is as good as the model for regions. Then we used 
it in a similar manner to obtain estimations for county means together with their precisions. Due to the large 
number of French counties we don’t present the results here. They can be found in Stefan[4]. In Figure 5 we 
plotted the coefficient of variation of the county means estimations versus size of the county sample. Just as 
we estimated earlier the R04AM France mean with the model in section 2, we will also be able with the new 
model to estimate the regional means and the France mean. We did it and we obtained very close values to 
those in Table 1. 
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Figure 5. Coefficient of variation versus size of the county sample size 

5. CONCLUSION 

The objective of this paper was to construct a model on which to base the inference aimed at obtaining 
regional estimations for the number of visits to the generalist in the last year. We compared our estimations 
with INSEE design-based estimations and found that when model-based the methodology for small areas 
produces coefficients of variations half those of INSEE. 

 We considered one variable R04AM which is a count variable like the variable considered in 
Stefan[5]. Their methodologies were similar. In the future we will construct models for other variables in 
FHS (binary or continuous). For other types of variables the Poisson distribution will be replaced by 
Bernoulli or Binomial distributions. Over or under dispersion will have to be checked and accounted for 
properly. 

 In deriving the formulas (1) and (2) we supposed that the cell sample sizes  are non-random. In 
practice this is generally not true. In the classical survey sampling theory computations using random  are 
not feasible, that’s why under such circumstances analyses are conditional on the realized sample sizes. In a 
full hierarchical Bayesian context Oleson and al.[2] proposed a model accounting for random sample sizes 
and also random population sample sizes. Based on their paper we will extend our present work. 

iskn

iskn

 Survey sampling are generally characterized by nonresponse and FHS is no exception. If not 
properly accounted for the nonresponse can lead to biased estimation. In our paper we supposed that there is 



9 Small area estimation of the number of visits to the specialist in 2002/2003 French Health Survey  

complete response. In fact we removed the approximately 1000 individuals that didn’t provide any value for 
R04AM and realized our analysis on the remaining ones. Nandram and al.[1] and the references therein 
constitute a large literature to see how the nonresponse in FHS can be properly dealt with in a full 
hierarchical Bayesian context. 
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