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In this paper an analytical method is developed to identify the Bouc-Wen model parameters from the 
experimental data of periodic loading tests. The model parameters are determined by closed analytical 
relationships such as the predicted and experimental hysteresis loops to have exactly the same 
maximum force values and coordinates of loop- axes crossing points. Asymmetric hysteretic 
characteristics are modeled by sewing the solutions of two different Bouc-Wen equations, 
corresponding to negative and positive values of the imposed cyclic displacement. The method 
efficiency is illustrated by its application to portraying the asymmetric hysteretic behavior of two 
vibration control devices. 
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1. INTRODUCTION 

The Bouc-Wen model, widely used in structural and mechanical engineering, gives an analytical 
description of a smooth hysteretic behavior. It was introduced by Bouc [1] and extended by Wen [2], who 
demonstrated its versatility by producing a variety of hysteretic characteristics. The hysteretic behavior of 
materials, structural elements or vibration isolators is treated in a unified manner by a single nonlinear 
differential equation with no need to distinguish different phases of the applied loading pattern. In practice, 
the Bouc-Wen model is mostly used within the following inverse problem approach: given a set of 
experimental input–output data, how to adjust the Bouc-Wen model parameters so that the output of the 
model matches the experimental data. Once an identification method has been applied to tune the Bouc-Wen 
model parameters, the resulting model is considered as a “good” approximation of the true hysteresis when 
the error between the experimental data and the output of the model is small enough from practical point of 
view. Usually, the experimental data are obtained by imposing cyclic relative motions between the mounting 
ends on the testing rig of a sample material, structural element or vibration isolator and by recording the 
evolution of the developed force versus the imposed displacement.  Once the hysteresis model was identified 
for a specific input, it should be validated for different types of inputs that can be applied on the testing rig, 
such as to simulate as close as possible the expected real inputs. Then this model can be used to study the 
dynamic behavior of different systems containing the tested structural elements or devices under different 
excitations.  

Various methods were developed to identify the model parameters from the experimental data of 
periodic vibration tests. A frequency domain method was employed to model the hysteretic behavior of wire-
cable isolators [3], iterative procedures were proposed for the parametric identification of a smoothed 
hysteretic model with slip [4], of a modified Bouc-Wen model to portray the dynamic behavior of 
magnetorhological dampers [5], etc. The Genetic Algorithms were widely used for curve fitting the Bouc-
Wen model to experimentally obtained hysteresis loops for composite materials [6], nonlinear degrading 
structures [7] or magnetorheological fluid dampers [8-10].  

In the present work, our primary focus is to give closed analytical relationships to determine the 
parameters of the Bouc-Wen model such as the predicted hysteresis curves and the experimental loops to 
have same absolute values of the maximum forces and same coordinates of the loop-axes crossing points. 
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The derived equations can be used for fitting the Bouc-Wen model to both symmetric and asymmetric 
experimental loops. The asymmetry of experimental hysteresis curves is due to the asymmetry of the 
mechanical properties of the tested element, of the imposed cyclic motion, or of both factors. In most cases, 
the identified model output turns out to be a “good” approximation of experimental output. When this 
approximation is not satisfactory, the obtained parameter values can be used as initial values within an 
iterative algorithm to improve the model accuracy. 

2. ANALYTICAL APPROACH 

 Suppose the experimental hysteretic characteristic is a symmetric loop ( )m mF F x F− ≤ ≤ , obtained 
for a periodic motion ( ) ( ) ( )m mx t x t x t− ≤ ≤

(
, imposed between the mounting ends of the tested element. The 

loop-axes crossing points are: )00,  A F , ( )0,  0C x , ( )00,  D F− and ( )0,  0E x− .     
 By introducing the dimensionless magnitudes 

( ) ( ) ( ) ( ) ( )
( ) ( ) 0 0 0 0

, , d d ,

max , max , ,
u u

m m u

t T x T x z F x F

z z x x z F F

′τ = ξ τ = τ ξ τ = ξ τ ξ = ξ

ξ = ξ τ = ξ ξ = =

,u

u

 (1) 

where is the period of the imposed cyclic motion and T ux , uF  are displacement and force reference units 
such as , a generic plot of the symmetric hysteresis loop 1,  1m mzξ ≤ ≤ ( )z ξ  can be represented as shown in 
figure 1. 
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Fig.1. Generic experimental hysteretic loop 

 The Bouc –Wen   model, chosen to fit the hysteresis loop shown in figure 1, is described by the 
following non-linear differential equation   

( )
d d

sgn 'n
z

A z z
= ξ

⎡ ⎤− β + γ ξ⎣ ⎦
 (2) 

where  are loop parameters controlling the shape and magnitude of the hysteresis loop,  ,  ,  A β γ n ( )z ξ . Due 
to the symmetry of hysteresis curve, only the branches , AB BC  and CD , corresponding to positive values 
of the imposed displacement ( )ξ τ , will be considered.  
The model parameters are to be determined such as the steady-state solution of equation (2), under 
symmetric cyclic excitation, to satisfy the matching conditions considered in (3). 
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( ) ( ) ( ) ( )0 00  at ,  ,  0,  0  at m mz z A z z z z z= ξ = ξ = = − 0 D  (3) 

Equation (2) is solved analytically for  = 1 and 2. For arbitrary values of , the equation can be 
solved numerically. In the present work, the proposed method for fitting the solution of equation (2) to the 
experimental hysteresis loop shown in figure 1, is illustrated for = 1 and 2.  

n n

n

Fitting the Bouc-Wen model to symmetric experimental hysteresis loops for n=1 

If are considered the notations  

,  α = β + γ δ = β − γ  (4) 

the equation (2) takes on three different forms for each the three branches , AB BC  and  shown in   
figure 1: 

CD

d d d: d ,  : d ,  :z z zAB BC CD
A z A z A z

= ξ = ξ = ξ
− σ − δ + σ

d  (5) 

From equations (5)1 and (5)2 one can calculate straightforward the slopes 1α  and  of  and 2α AB BC  
branches in the point B : 

1
on 

m m
AB

dz A z
d ξ→ξα = = − σ
ξ

, 
m

on BC
2 m

dz A z
d ξ→ξ

α = = −
ξ

δ  (6) 

Since the condition <  holds for any physical hysteresis loop, from equation (6) one obtains 1α 2α σ > δ . 
Therefore, the Bouc-Wen model can portray a real hysteretic behavior only for positive values of 
parameter .  γ

Integration of equations (5) on each branch yields three different relationships between the parameters 
, measured on the experimental loop, and the Bouc-Wen model parameters .  0,  ,  ,  m mz zξ ξ 0 ,  ,  A σ δ

 A. Integration of equation (5)1 on the branch  yields AB
m m

0

m
0

z

z

dz d
A z

ξ

= ξ = ξ
− σ∫ ∫  (7) 

A1. If  then (7) becomes 0σ = 0m
m

z z
A
−

= ξ  that implies  

0m

m

z zA −
=

ξ
 (8) 

A2. If , then for ∀ , if and only if the condition 0σ > 0A z− σ ≠ 0[ ,  ]mz z z∈ /mz A< σ  holds. 
A3. If , then  ∀ . 0σ < 0A z− σ > 0[ ,  ]mz z z∈

In both A2 and A3 cases one can obtain (for 0σ ≠ and /mz A< σ ): 

0

mmA z e
A z

−σξ− σ
=

− σ
 (9) 

 B. If equation (5)2 is integrated on BC  branch one can find: 

00

0 m

m mz

dz d
A z

ξ

ξ

= ξ = ξ − ξ
− δ∫ ∫  (10) 
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B1. If  then the relation (10) becomes 0δ = 0
m

m
z
A
= ξ − ξ  that yields 

0

m

m

zA =
ξ − ξ

 (11) 

B2. If , then for ∀  if the condition 0δ > 0A z− δ ≠ 0[ ,  ]mz z z∈ /mz A< σ  holds ( ) / /A Aσ < δ
B3. If , then  ∀ . 0δ < 0A z− δ > 0[ ,  ]mz z z∈

In B2 and B3 cases, equation (10) implies the relation (for 0δ ≠ and /mz A< σ ) 

( )0mmA z e
A

−δ ξ −ξ− δ
=  (12) 

 It is easily seen that conditions (8) and (11) are not compatible. Therefore, 0σ = , , i.e. 0δ = 0β = γ =  
cannot be a solution such as Bouc-Wen model to portray hysteresis loops.   
 C. By integration of equation (5)3 on the branch , the following relation is obtained:  CD

0

0

0

0
0

z
dz d

A z

−

ξ

= ξ = −ξ
+ σ∫ ∫  (13) 

C1. If  then (13) becomes  that implies  0σ = 0 /z A = ξ0

0

0

zA =
ξ

 (14) 

By combining the relations (8) and (14), one can derive the condition that must be satisfied by the measured 
parameters  such as  (i.e.0,  ,  ,  m mz zξ ξ 0 0σ = β = −γ ) to be an acceptable solution for fitting the Bouc-Wen 
model to experimental data: 

0 0

0

m

m

z z z−
=

ξ ξ
 (15) 

C2. If  then  for ∀  if the condition 0σ < 0A z+ σ ≠ 0[ ,  ]mz z z∈ /mz A< σ  holds. 
C3. If  then for∀ . 0σ > 0A z+ σ > 0[ ,  ]mz z z∈

Thus for , 0σ ≠ /mz A< σ , integrating the equation number (13) yields  

0

0

A e
A z

σξ=
− σ

 (16) 

 By taking into account the relations (9) and (16), one can obtain 

0
0 0 0m

m mz z e z e z−σξ −σξ− + − =⎡ ⎤⎣ ⎦  (17) 

which is a transcendent algebraic equation for parameterσ . It can be proved that the equation (19) has 
always the solution  and at most another one0σ = 0σ ≠ . If condition (15) holds then  is the only one 
solution and the value of parameter  is given by (14).  

0σ =
A

Otherwise,  is obtained from (16):  A

0

0

1
zA

e−σξ
σ

=
−

 (18) 

 Next, the equation (12) can be rewritten as 
( )0 0m

mA z Ae−δ ξ −ξ− δ − =  (19) 



5 An analytical approach for approximation of experimental hysteretic loops by Bouc-Wen model 

As in the case of equation (17), one can prove that equation (19) has always the solution  and at most 
another one . If the value of , given by (18) also satisfies (11), then 

0δ =
0δ ≠ A 0δ =  is the unique solution of 

equation (19). Otherwise, the value of δ  is found by solving equation (19) in which  is given by (14) or by 
(18), as condition (15) is fulfilled or not. 

A

Fitting the Bouc-Wen model to symmetric experimental hysteresis loops for n=2 

If  =2 then from the relations (2), (3) and (4) one can get the equations on the branches , n AB BC  and 
: CD

2 2

d d d: d ,  : d ,  : dz z zAB BC CD
A z A z A z

= ξ = ξ = ξ
− σ − δ − σ 2

 (20) 

Next is applied the same procedure in order to obtain the loop parameters ,  ,  A β γ  in terms of the given ones, 
. 0 0,  ,  ,  m mz zξ ξ

 A. Integration of equation (20)1 on the branch  determine the relation AB
m m

0

m2
0

z

z

dz d
A z

ξ

= ξ = ξ
− σ∫ ∫  (21) 

A1. If  then (21) becomes 0σ = 0m
m

z z
A
−

= ξ  that implies relation (8). 

A2. If , then for ∀  is true if and only if the condition 0σ > 2 0A z− σ ≠ 0[ ,  ]mz z z∈ m
Az <
σ

 holds. 

In this case, the equality (21) gives the relation: 

( )
( )

0

0

tanh
1

m

m

m

z z
A A

z z
A

σ
−

= σξ
σ−

 (22) 

where is used the notation ( )tanh
x x

x x

e ex
e e

−

−

−
=

+
 for the hyperbolic tangent of x . 

A3. If , then  ∀ . 0σ < 2 0A z− σ > 0[ ,  ]mz z z∈
By integrating (21) one can obtain: 

( )0

0

arctan
1

m

m

m

z z
AA

z z
A

σ
−

ξ σ =
σ

+
 (23) 

Hence, for  is obtained the relation (8), while for 0σ = 0σ ≠ and m
Az <
σ

 one can get the nonlinear 

equations (22) (for ) and (23) (if ). 0σ > 0σ <
B. If equation (20)2 is integrated on BC  branch then: 

0

m 02
0

m mz
dz d

A z

ξ

ξ

= ξ = ξ − ξ
− δ∫ ∫  (24) 

B1. If  then the relation (24), as in n =1 case, becomes the equation (11). 0δ =
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B2. If , then  for ∀  if the condition 0δ > 2 0A z− δ ≠ [0,  ]mz z∈ m
Az <
σ

 holds (because A A
<

σ δ
) 

Next, by integrating (24) is obtained: 

( )0tanhm mz A
A
δ ⎡ ⎤= δ ξ − ξ⎣ ⎦  (25) 

B3. If , then  for ∀ . 0δ < 2 0A z− δ > [0,  ]mz z∈
In this case the equation (24) yields: 

( )0 arctanm mA z
A

⎛ ⎞δ
⎜ ⎟δ ξ − ξ =
⎜ ⎟
⎝ ⎠

 (26) 

C. By integration of equation (20)3 on the branch CD  is obtained: 

0

0

0

02
0z

dz d
A z

ξ

−

= ξ = ξ
− σ∫ ∫  (27) 

C1. If  then (27) becomes the relation (14). 0σ =

C2. If then the condition  for ∀0σ > 2 0A z− σ ≠ 0[ ,  0z z ]∈ −  is true if 0
Az <
σ

 (which is implied by 

m
A
σ

z < ). Under this hypothesis one can obtain from (27) the equation: 

 0 0tanhz A
A
σ ⎡ ⎤= σξ⎣ ⎦  (28) 

C3. If , then  ∀ . 0σ < 2 0A z− σ > 0[ ,  0z z∈ − ]
In this case, using (27) is derived the relation: 

0 0arctanA z
A

⎛ ⎞σ
⎜ ⎟σ ξ =
⎜ ⎟
⎝ ⎠

 (29) 

As one can see, the parameters  and  are determined from the relations derived on the branches  and 
. After that, with  and  known is obtained 

A σ AB
CD A σ δ  from integration on BC  branch. The equations with  
and  are written in a convenient way if the following notations are introduced ( ): 

A
σ ,  0x y >

,  A x
A
σ

yσ = =  (30) 

 
Therefore, if x  and  are known then  and y A σ  can be computed as  

,  xxy A
y

σ = =  (31) 

 
The algorithm for obtaining  and : A σ

1) If the relation (equivalent with (15)) 0 0

0
0m

m

z z z−
− =

ξ ξ
holds then 0σ =  and 0 0

0

m

m

z z zA −
= =

ξ ξ
. 
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2) If (15) is not true then is considered the system (corresponding to 0σ > ) containing the equations (22) 
and (28): 

( ) ( )

( )

0
2

0

0 0

tanh
1

tanh

m
m

m

z z y
x

y z z
z y x

⎧ −
= ξ⎪ −⎨

⎪ = ξ⎩

 (32) 

Hence, (32) can be rewritten 

( )

( ) ( ) ( ) ( )

0
0

2
0 0 0 0

1 tanh

( ) tanh [ tanh ]tanh 0
not

m m

y x
z

f x z z x z x z x+

⎧ = ξ⎪⎪
⎨
⎪

m= − ξ + ξ − ξ⎪⎩ =

 (33) 

If the equation ( ) 0f x+ =  has a solution  then 0xσ > ( 0
0

1 tanhy x
z

)σ σ= ξ  and x yσ σσ = , xA
y
σ

σ

= . 

3) If (15) is not true and ( ) 0f x+ =  has no solution  (corresponding to 0x > 0σ < ) then is considered the 
system of equations  

( )

( )

0
2

0

0 0

arctan
1

arctan

m
m

m

z z y
x

y z z
x yz

⎧ −
ξ =⎪ +⎨
⎪ξ =⎩

 (34) 

By combining the relations in (34) one can derive: 

( )

( ) ( ) ( )

0
0

0
0 0 2

0

1 arctan

arctan arctan 0
1

m
m

m

x yz

z z y
f y z y

y z z−

⎧ =⎪ ξ⎪
⎨ −⎪ = ξ − ξ =
⎪ +⎩

 (35) 

If the equation ( ) 0f y− =  has a solution  then 0yσ > ( 0
0

1 arctan )x z yσ σ=
ξ

 and x yσ σσ = − , xA
y
σ

σ

= . 

The next step is to determine the value of δ  under the hypothesis that  and  are computed. The 
following notation is assumed  

A σ

y
A
δ
=  (36) 

so, if  is given then0y > 2Ayδ = . Using this notation the relations (25) and (26) become 

( ) ( )0tanh 0
not

m mg y Ay yz+ ⎡ ⎤= ξ − ξ −⎣ ⎦ =

=

 (37) 

( ) ( ) ( )0arctan 0
not

m mg y z y Ay− = − ξ − ξ  (38) 

 
Proposition 1 
Consider the equation (37): ( ) 0g y+ = , ≥0 where , , y A mz mξ , 0ξ >0 and 0 mξ < ξ . Then 

- if 
0

m

m

zA >
ξ − ξ

 then (37) has an unique positive solution ; 0yδ >
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- if 
0

m

m

zA ≤
ξ − ξ

 then (37) has no positive solution. 

Proof 
It is easy to check that ( )0 0g+ =  and ( )lim

y
g y+→∞

= −∞ . 

By computing the derivative of  one can obtain:  g+

( ) ( ) ( ){ }2
0 0' 1 tanhm mg y A A y z+ ⎡ ⎤= ξ − ξ − ξ − ξ −⎣ ⎦ m , ∀ ≥0.  y

In order to study the monotony of , the critical points are investigated (i. e. the solutions of equation g+

( )'g y+ = 0 y, ≥0). Then one can write: 

( )' 0g y+ = ⇔ ( ) ( )
2

0
0

tanh 1 m
m

m

zA y
A

⎡ ⎤ξ − ξ = −⎣ ⎦ ξ − ξ
. 

The previous equation has positive solutions if and only if 
( )0

1 m

m

z
A

−
ξ − ξ

∈(0, 1) ⇔
0

m

m

zA >
ξ − ξ

. 

If 
0

m

m

zA ≤
ξ − ξ

 then ( )' 0g y+ < , ∀ >0 so y ( ) 0g y+ < , ∀ >0, therefore (37) has no positive solution. y

If 
0

m

m

zA >
ξ − ξ

 then ( )'g y+ = 0  has only one positive solution 
( ) ( )

1

0 0

1 tanh 1 m

m m

zy
A A

−
+ = −

ξ − ξ ξ − ξ
, 

where  is the inverse of function tanh. 1tanh−

On the other hand ( ) ( ) ( ){ } ( ){ }22 2
0 0" 2 tanh 1 tanhm m mg y A A y A y+ 0⎡ ⎤ ⎡= ξ − ξ − ξ − ξ − ξ − ξ ⎤⎣ ⎦ ⎣ ⎦ y, ∀ >0, then   

( )" 0g y+ + < , so  is a maximum point to y y+= g+  on (0, ∞). 
As ( )0 0g+ = , ( )lim

y
g y+→∞

= −∞  and ( ) 0g y+ + >  one can derive: there is a unique positive value  

such that 

0yδ >

( ) 0=g y+ δ . 
 
Proposition 2 
Consider the equation (38): ( ) 0g y− = , ≥0 where , , y A mz mξ , 0ξ >0 and 0 mξ < ξ . Then 

- if 
0

m

m

zA <
ξ − ξ

 then (38) has an unique positive solution ; 0yδ >

- if  
0

m

m

zA ≥
ξ − ξ

then (38) has no positive solution. 

Proof 
It is easy to prove that ( )0 0g− =  and ( )lim

y
g y−→∞

= −∞ . 

Next is computed the first derivative of : g− ( ) ( )( )2 2
0
2 2

1
'

1
m m m

m

z A z y
g y

z y−

− ξ − ξ +
=

+
, ∀ ≥0. y

0  is equivalent with: ( )
( )

02
2

0

m m

m m

z A
y

Az
− ξ − ξ

=
ξ − ξ

, ≥0. So y ( )'g y− =The equation ( )'g y− = 0  has positive 

solutions if and only if 
0

m

m

zA <
− ξ

. 
ξ

If 
0

m

m

zA ≥
ξ − ξ

 then ( )' 0g y− < , ∀ >0 so y ( ) 0g y− < , ∀ >0, therefore (38) has no positive solution. y
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If 
0

m

m

zA <
ξ − ξ

 then ( )'g y− 0=  has only one positive solution ( )
( )

0
2

0

m m

m m

z A
y

Az+

− ξ − ξ
=

ξ − ξ
. 

On the other hand, ( )
( )

3 2

22 2

2"
1

m

m

z yg y
z y

− = −
+

<0, ∀ >0, so y ( )" 0g y− + < ⇒ y y+=  is a maximum point to g−  

on (0, ∞). As ( )0 0g− = , ( )lim
y

g y−→∞
= −∞  and ( ) 0g y− + >  one can derive: there is a unique positive value 

 such that 0yδ > ( ) 0=g y− δ . 
 
The algorithm for obtaining  (  and  are known): δ A σ
1) If  then  (as ) so is considered only the equation (38) which has a unique solution 

.Therefore 
0σ ≤

0
0δ < σ > δ

yδ > 2Ayδδ = − . 
2) If then three cases are possible for0σ > δ : 

2.1) If the parameter  satisfies the relation (11) (A
0

m

m

zA =
ξ − ξ

) then 0δ = . 

2.2) If 
0

m

m

zA >
ξ − ξ

 then only the equation (37) has a positive solution  (which is unique), so 0yδ > 2Ayδδ = . 

2.3) If 
0

m

m

zA <
ξ − ξ

 then only the equation (38) has an unique positive solution , so 0yδ > 2Ayδδ = − . 

Fitting the Bouc-Wen model to asymmetric experimental hysteresis loops 

Suppose the experimental hysteretic characteristic is a asymmetric loop ( )m2 m1F F x F− ≤ ≤ , obtained 
for a periodic motion ( )2m 1mx x t x− ≤ ≤ , imposed between the mounting ends of the tested element. As 
before, the loop-axes crossing points are: ( )00,  A f , ( )0,  0C x , ( )00,  D f−  and ( )0 ,  0E x− . In this case, the 
fitting method is developed as a combination of two symmetric cases: 

( ) ( ) ( ) ( )m1 1 m1 m1 m1 m2 2 m2 m2 m2for , and for ,F F x F x x t x F F x F x x t x− ≤ ≤ − ≤ ≤ − ≤ ≤ − ≤ ≤  (39) 

With notations similar to (1), the asymmetric hysteresis loop ( )z ξ  is modeled by  

( ) ( )[ ] ( )[ ]

( ) ( )[ ] ( )[ ]{ }

1 1 1 2 2 2

1 1 2

1 11 sign 1 sign ,
2 2
1 1 sign 1 sign
2

z z zξ = ξ + ξ + ξ − ξ

ξ τ = ξ τ + ξ + ξ τ − ξ2

 (40) 

where ( )1z ξ  and ( )2z ξ , are the solutions of the symmetric Bouc-Wen equations 

( ) ( )
1 2

1 1 1 1 1 1 2 2 2 2 2 2

,
sgn sgn

dz dzd d
A z z A z z

= ξ =
′⎡ ⎤ ⎡− β + γ ξ − β + γ ξ⎣ ⎦ ⎣

ξ
′ ⎤⎦

 (41) 

 For each of these equations, the loop parameters are determined according to the fitting algorithm 
presented in the previous section. As the loop-force axis crossing points of both branches have same 
coordinates, ( )z ξ  is continuous in these points. By using equations (41), the continuity conditions of its 
derivative in these points lead to  

1 0 1 2 0 2 1 1 1 2 2, where ,A z A z 2− σ = − σ σ =β + γ σ =β + γ  (42) 

As the parameters are uniquely determined such as 1 1 2,  ,  ,  A Aσ 2σ ( )z ξ  to have imposed extreme 
values and axes crossing points, one must take into consideration a trade-off between these requirements and 
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curve smoothness condition (42), such as to minimize a given accuracy cost function. This optimization of 
Bouc-Wen model fitting to asymmetric experimental hysteresis loops can be approached by iterative or 
Genetic Algorithms methods. 

3. APPLICATION TO EXPERIMENTAL ASYMMETRIC HISTEREZIS LOOPS  

The fitting method was applied to identify the differential Bouc-Wen models for = 1 and 2, which 
the hysteretic behavior of two vibration control devices: SERB-B-194 for earthquake protection of buildings 
by bracing installation [11], and SERB-B 300C for base isolation of forging hammers [12]. The results 
presented in figures 2 and 3 prove the efficiency of the proposed method for fitting the considered 
experimental hysteresis loops by Bouc-Wen model with = 1. As one can see from figures 4 and 5, for    

= 2, the approximation of  experimental loops is not so good as the one obtained for = 1, particularly for  
SERB-B-194 device. Even though the predicted loop for = 2 and the experimental loop, have same 
extreme values and axes crossing points, their shape is quite different. This result shows the importance of 
choosing the right value of the exponent  when fitting a given experimental hysteresis loop by a Bouc-Wen 
model.  

n

n
n n

n

n

Is worth mentioning these results were obtained by the straight application of the fitting analytical 
method, without any further accuracy improvement. The model accuracy can be easily improved by 
conventionally iterative methods or evolutionary (Genetic Algorithms) starting from these parameters values. 
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Fig.2. Fitting the hysteretic characteristic of vibration control device SERB-B-194 

analytical model (n=1):  A1 = 0.26, β1 = -3.245, γ1 = 0.55; A2 = 0.253, β2  = -4.035, γ2 = 0.62 
experimental data:  ξm1= ξm2  = 0.69, zm1 =0. 65, zm2=0.92, ξ0 =0.07, z0 = 0.02 
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Fig.3. Fitting the hysteretic characteristic of vibration control device SERB-B 300C 

analytical model (n=1):  A1 = 0.686, β1 = -1.54, γ1  = 1.125;  A2 =0.0.725, β2 = -0.04, γ2 = 0.735 
experimental data:  ξm1=0.48, zm1 =0.45, ξm2=0.53, zm2=0.37, ξ0 =0.1, z0 = 0.07 
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Fig.4. Fitting the hysteretic characteristic of vibration control device SERB-B-194 

analytical model (n=2):  A1 = 0.284, β1 = -14, γ1 = 3.32;   A2 = 0.284, β2  = -15.5, γ2 = 3.45 
experimental data:  ξm1= ξm2  = 0.69, zm1 =0. 65, zm2=0.92, ξ0 =0.07, z0 = 0.02 
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Fig.5. Fitting the hysteretic characteristic of vibration control device SERB-B 300C 
analytical model (n=2):  A1 = 0.7, β1 = -6.26, γ1  =5;  A2 =0.7, β2 = -0.916, γ2 = 3.14 

experimental data:  ξm1=0.48, zm1 =0.45, ξm2=0.53, zm2=0.37, ξ0 =0.1, z0 = 0.07 
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