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The main purpose of this brief article is to give a more elementary, but however nontrivial, proof of
the following fact appeared in Proc. Roman. Acad. Sci. — Ser. A, Math. (2008), namely: Let G be an
abelian group whose p-component Gy is totally projective and F, is a simple field with characteristic p
> 0. Then for any group H the F, — isomorphism of group algebras FyH = F,G implies H, =G, The
idea is based on a new group criterion for total projectivity of p-primary abelian groups in arbitrary
length.
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Suppose F,G is the group algebra of an abelian group G over the finite p-element field F,. In [4],
Warren Lee May has asked the following, posed for an arbitrary field F of char(F) = p =0:

Isomorphism Question (May, 1988). If F,G =F,H as F,-algebras for some group H and G, is totally
projective, does it follow that G, ~H,?

Partial solutions to the above formulated problem are given by us in [1] and [2]. The complete settling
of the May’s query is stated in our investigation [3] as well.

Our major goal here is to simplify the method used in [3], but before do this, we shall argue one useful
group necessary and sufficient condition for total projectivity of p-torsion groups in arbitrary lengths of some
interest and importance. So, we proceed by proving

A
Group Criterion. The reduced abelian p-group A is totally projective if and only if A/A” " is a direct
sum of groups with lengths strictly less than A for some limit ordinal A < length(A) such that A = length(A)

provided length(A) is limit, and A/Apa is totally projective for all « < A that is A is a C,-group.

Proof. Case 1. Assume length(A) is limit. The necessity holds directly by [5].

For the sufficiency, we write down A = Ji, A;, where length(A;) < A. Because A”a =Jia Ai”a, the

canonical isomorphism yields A/A”a = Ai/Ai”a. Moreover, by the supposition along with [5], Ai/Aipa is

totally projective for o = length(A;) and every ie |, i.e., so is A;. Finally, taking into account [5], the same
property has and A, as promised.

Case 2: Let length(A) be arbitrary, whence length(A) = 4 + n for some limit ordinal A and natural
number n.

The left implication is true by virtue of [5].

A ph

For the right one, bearing in mind that (A* )" = 1 together with [5], A is totally projective if and only

A A
if sois A/JA”. But, it is obvious that length(A/A” ) = A. Thus, in view of the first step and by the text, the
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facts that A/AP" = 37, G, where length(Gy) < 4 and A/AY 1(AAP )Y = AP /(AP % 17" ) = AiAP? for each

A
a<A does imply that A/A” " must be totally projective, as required.

Well, we come to the central aim raising the

General Answer of the May’s Isomorphism Question. We shall use a transfinite induction on
lenfth(Gy). In this aspect, we presume that the theorem is valid for groups of lengths strictly less than

1) 0.
length(G,). Owing to the Main Proposition from [1], F,(G/G," ) = Fy(H/H,’ ) as Fy-algebras for all ordinals
0, o
6. So, by hypothesis, (H/H," ), = Hy/H," is totally projective for each § < length(H,) = length(Gy).

According to the scheme of proof in [3], (H/pryp = Hp/pryis a direct sum of groups in lengths strictly not

exceeding vy < length(H,) for an arbitrary limit ordinal y with such a property. Next, the exploiting of the
Group Criterion leads us to this that H, is totally projective, as desired.
The proof is completed after all.
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