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Abstract: In industrial processes, physical components or automatic control components, sensors, 
and/or actuators are often affected by un-permitted or un-expected deviations from their normal 
operation behavior.  The fault detection task consists in determination of the fault occurrence and time 
of detection. The diagnostics procedures are based on the observed analytical and heuristical 
symptoms and the heuristic knowledge of the process. In this paper a comparison between different 
methods of fault detection and an overview of the fault diagnosis procedure for technical system is 
provided. For some classes of processes the structure and some parameters are well known but for 
others only rough models are available. Therefore the methods for fault detection and diagnosis are 
mainly different and several examples are explained.  
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1. INTRODUCTION 

Fault detection and diagnosis (FDD) methods consists, in general, in a two level procedures a residual 
generation and fault detection part and a symptom generation and diagnostic part. In the first level, the 
difference between measurements and computed variables are called residuals and these quantities are 
indicative of the presence of faults in the system. In the second level, the relations between symptoms based 
residuals and faults are established. To detect and isolate a fault is important to find the significant 
symptoms, which are robust against noises or disturbances. In order to avoid the possible loss of the systems 
performance because of a fault appearance, many research efforts in the field of process supervision, fault 
detection and diagnosis have been made [7, 10, 15].  

A general FDD scheme for a process consists of two levels procedure depicted in Figure 1. 
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Figure 1. FDD model-based general scheme with process/signal model 
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The objective of FDD is not only to determine some fault presence in the system and the time of fault 
occurrence (fault detection), to establish the kind and location of fault (fault isolation) and to estimate the 
behavior of the fault in time and amplitude as well as the cause of this un-expected system behavior. 

The model-based fault detection methods rely on the concept of analytical redundancy. In contrast to 
physical redundancy, when measurements from parallel sensors are compared to each other, now sensor's 
measurements are compared to analytically computed values of the respective variable. Such computation 
use present and/or previous measurements of other variables, and the mathematical plant model describing 
their nominal relationship to measured variable. The idea can be extended to the comparison of two 
analytically generated quantities, obtained from different sets of variables. In either case, the resulting 
differences, called residuals, are indicative of the presence of faults in the system. 

Advanced methods of fault detection are using mathematical process and signal methods. A survey 
and a comparison of these methods are discussed in the following section. 

2. FAULT DETECTION METHODS 

The basic fault detection methods are using models and by comparison between measurements and 
normal behavior models residuals are generated. These variables, residuals, are compared against thresholds 
and a decision test decides if a fault occurred.  

The comparison of the different methods for fault detection is not easily performed because the final 
practical results depend on many aspects like process type, un-permitted or un-expected disturbances, open 
or close loop structure, processes nonlinearities, etc. The structure and at least some parameters are relatively 
well known for some types of processes, like electrical, mechanical, thermo or hydraulic processes. For 
others processes only rough models are available, as e.g. industrial processes with moving parts, chemical, 
mineral or metal processing. 

Figure 2 summarizes the basic fault detection methods. 

FAULT DETECTION METHODS

SIGNAL BASED PROCESS BASED

correlation function Fourier analysis  Wavelet analysis parameter estimation parity equation  state estimation  observers

 
Figure 2. Basic fault detection method 

Fault detection with process models are considered if additive or multiplicative faults within the 
process influence the input/output measurable signals. The process models could be considered by using 
parameters estimators, parity equations or state observers and state estimation. 

These methods are based, for example, on discrete state-space models [2], time continuous state-space 
models [10], observers [8] or transfer function models [9,12]. 

Parity equations and observer – based methods have partially almost identical properties, but parity 
equations are much simpler to be design, to be implemented and to be used. Parity equations and observers-
based methods are well suited for additive faults, but are not in general well suited for multiplicative faults. 
For multiplicative faults the parameter estimators are best suited. 

Another essential difference is that parity equations and observers based methods need more than one 
inputs measurement to detect and isolate several faults, but for parameter estimation methods one input and 
one output is sufficient to detect and diagnose different faults.  

A qualitative comparison of properties of different fault detection methods for SISO (Single Input 
Single Output) and MIMO (Multi Input Multi Output) processes is depicted in table 1. 

Signal processing is another way to deal with fault diagnosis [1]. This approach is based on a signal 
model. Signals may be analyzed either using time-domain methods (e.g. correlation, mean-change) or 
frequency domain methods (e.g. Fast Fourier Transform, FFT), or with more sophisticated methods 
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including time-frequency or wavelet analysis [18]. Decision may be based on the normal process behavior 
knowledge (for instance the signal is zero-mean) or on some faulty behavior knowledge (for instance, a fault 
gives rise to some extra frequency contents in the spectrum).  

Table 1. 
 Parity 

equations 
State 

estimation 
Parameter 
estimation 

Assumptions: 

Model structure and 
parameters 

known known known/ 
unknown 

Detectable faults: 

Abrupt, incipient, 
single faults 

yes yes yes 

Multiple faults SISO: no 
MIMO: yes

SISO: no 
MIMO: yes 

SISO: yes 
MIMO: yes

Fault isolation SISO: no 
MIMO: yes

SISO: no 
MIMO: yes 

SISO: yes 
MIMO: yes

Additive yes yes yes 

Multiplicative no no yes 

 
All these approaches have a common difficulty: how to ensure that a change in some quantity is 

characteristic of a particular fault [10]. Signal based model fault detection can be applied especially for 
machine vibration, the position, speed or acceleration measuring, for example imbalance or bearing faults 
(turbo machines), knocking (gasoline engines), chattering (rolling mills), etc. 

Detection tests based on signal model that aim to detect a change in the mean or the standard deviation 
of a signal are now often used [1, 11].  

Frequency representations are particularly useful for studying rotating machines because of the extra 
frequency contents that generally appear under the influence of a fault. For instance [3] deeply study faults in 
a three phase induction machine. The spectral analysis of electric and electromagnetic signals shows that 
mechanical abnormalities such as broken rotor bars generate characteristic frequency contents in the signals. 
The Fourier Transform is unable to accurately analyze and represent a signal with non periodic features, for 
instance a transient signal. To study non stationary signals, time-frequency methods replace traditional 
spectral analysis. The Short Time Fourier Transform interpretation is close to a local Fast Fourier Transform 
analysis. The signal to analyze is multiplied by a sliding signal with finite duration (such as a rectangular, a 
Hamming, a Blackman window, etc.). Thus the spectrum is computed in real time and its important 
variations are used to detect faults. This method has been applied for instance in the metallurgical industry 
[8]. Rise in productivity in modern rolling mill plants induces an increase of the rolling speed. This also 
increases the potential vibrations of the system. Different vibration frequencies appear that correspond to 
particular faults [18]. Thus monitoring the frequency contents can help to localize the faults. 

3. MODEL BASED FAULT DETECTION EXAMPLE 

A MIMO model was choose in order to offer proper conditions to design model based FDD 
procedures using parity equations. An example of a heat exchanger model, a MIMO system with m inputs 
and r outputs is presented in [10]. For each output a linear local model could be considered taking into 
account all process input: 

1 1
( )( ) ( ) ; ( ) [ ( ) ... ( )] ; ( ) [ ( ) ... ( )]
( )

T TP
r m

P

B sy s u s y s y s y s u s u s u s
A s

= = =  (1)

The FDD scheme was tested on a heat exchanger case by presenting several different process and 
sensor faults, using the model library (Figure 3). 
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The considered system inputs are: water input temperature θLi, water speed wL (or water flow ML), air-
wall thermal flow qWG (or air flow MA) and air input temperature θAi. The system outputs considered of major 
interest are the water output temperature θLe and secondary, the air output temperature θAe. 

HqL

HwL

HτL

HθL

HqA

HwA

HθA

u1=MA
(S51)

u3=ML
(F31)

u2=θLi
(T32)

v1=θAi
(T51)

y1=θLe
(T41)

y2=θAe
(T52)

HτA

 
Figure 3. Heat exchanger MIMO model structure 

The above transfer functions, their gains and time constants are calculated in [4]. Considering the 
MIMO transfer function model for the heat exchanger [4, 5] the next equations systems is obtained, where 
H1 and H2 take into account the sensor model and channel model between heat exchanger and sensors: 

1

2

0
0

T
qL wL LLe

A L Li
qA wA AAe

H H HH
M M

H H HH
ϑ

ϑ

θ
θ

θ

• •⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⋅ ⋅⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎦
 (2)

The model based FDD is design with parity equations that starts with the mathematical model of the 
process for water-air heat exchanger, Figure 3 and equation (2).  

The residuals are calculated based on equations (3): 

1 1 1

2 2 2

( ) ( ) ( ) ( ) ( ) ( )1 0
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )0 1
qL wL LT

Le Ae A L Li
qA wA A

H s H s H s H s H s H s
r s w s s s M s M s s

H s H s H s H s H s H s
θ

θ

θ θ θ
• •⋅ ⋅ ⋅ ⎤⎡ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤

= ⋅ ⋅ + ⋅ − ⋅ − ⋅ − ⋅ ⎥⎢ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⋅ ⋅ ⋅⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦

 (3)

To obtain the decoupled residuals for each measured signal,  is computed imposing zero value 
for each terms of the r(s) equation.  

( )Tw s

For example the residual rϑLi is decoupled for the measurement of the water input temperature sensor 
θLi by satisfying a condition like:  

1

2

( ) ( )
( ) ( ) 0

( ) ( )
LT

Li
A

H s H s
w s s

H s H s
θ

θ

θ
⋅⎡ ⎤

⋅ ⋅⎢ ⎥⋅⎣ ⎦
=  where [ ]2 1( ) ( ) ( ) ( ) ( )

Li

T
A Lw s H s H s H s H sθ θ= − ⋅ ⋅ θ

 (4)

A solution for the decoupled residual generator elements is underlined: 
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( )Li sθ
⎤
⎥⎥
⎦

 
(5)

The design residuals relation (5) is necessary for fault detection and identification.

 

Each residual was 
designed to become independent to a specific measurement. In case that some of the measurements are 
damaged, the decoupled residual rest at a low value, instead all the other residuals are affected. 
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The relation (5) is completed with another two that represent the deviation of estimation values from 
the measured ones representing the residual build up with an output error method: 

ˆ( ) ( ) ( )
Le

P
Le Ler t t tϑ ϑ ϑ= − ;    ˆ( ) ( ) ( )

Ae

P
Ae Aer t t tϑ ϑ ϑ= − (6)

The group of residuals affected or not permits to locate certain faults. The residuals have the property 
to become zero if any fault exists or be different from zero if a fault appears in measurements or process. 

In order to detect or to identify a fault a threshold value ki must be settled for each residual in order to 
decide if the zero value of the residual has been reached or not. This value could be settled upon statistical or 
experimental considerations. In the last case this value can take into account the noise effects and the 
modelling errors too. The optimal selection of the thresholds is made through a compromise between false 
alarms and leak of fault detection. The thresholds values established for these residuals could cover the noise 
effects as well as modelling errors. 

The detection of a fault depends on the most sensitive residual and its isolation on the less sensitive 
one (but not on the decoupled residual).  

To isolate the fault source a set of residuals with different responses for each fault is needed. This 
principle is illustrated by incidence matrix (Table 2), each column representing a fault signature. The results 
presented in previous incidence matrix are valuable for investigated faults. This set of residuals is build to be 
very sensitive to faults in temperature sensors, so a small deviation like 1÷3 oC (1÷6% from maximal value) 
could be detected and isolated. For other faults the sensitivity is decreasing and only faults greater then 10% 
could be isolated. Smaller errors could be only detected. 

Table 2. Incidence Matrix 
Sensor’s and actuators fault  
F31 S51 T32 T41 T52 

Le
rϑ  1 1 0 0 1 

Ae
rϑ  0 1 1 1 0 

AM
r •

 0 0 0 1 0 

LM
r •

 0 1 1 1 1 

Li
rϑ  1 1 0 0 1 

Le

Pr ϑ
 0 1 1 1 0 

Ae

Pr ϑ  1 1 0 0 1 

0 – un-deflected residual 
1 – significant residual deflection  

 
Figure 4. Unified representation of residuals for an incipient fault on 

actuator F31 started at time t=2000 s 

To illustrate the above considerations a fault analysis will be presented. Considering an incipient fault 
in an actuator for water flow ML (F31), that appears at moment t=2000s, it could be detected and isolated due 
to its value. The residuals deflections are depicted in Figure 4 and for a better illustration these results were 
normalized by its thresholds. This operation allows uniform representation of information and implies a 
unique threshold to be used for all residuals. The early detection of the fault will depend on the most 
sensitive residual (rθLi). 
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4. SIGNAL BASED FAULT DETECTION EXAMPLE 

In order to detect “low” frequency vibrations that are characteristic for a specific fault, a signal based 
detection method is presented in this section. The fault detection method uses the Stationary Wavelet 
Transform (SWT). 

Wavelet decomposition can be implemented for FDD purpose when a fault occurrence is revealed by a 
signal singularity. The proposed detection method analyses the changes that appear over the different 
decomposition levels to detect the singularity. The hypothesis for fault isolation is that different faults induce 
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different effects on the wavelet coefficients over the decomposition levels. The isolation method proposed 
analyses the modification of the wavelet coefficients over the different levels of decomposition to deduce 
which fault is present. 

The detection procedure works in three steps. The first step transforms the signal into wavelets 
coefficients. It decomposes the signal on J scales. This step also allows characterizing the frequency contents 
that define the “normal” behavior of the system. The second step corresponds to the wavelet coefficient 
thresholds. A fuzzyfication of the threshold’s coefficients is implemented:  

1 2

( ) 0 2
2

0 0

j j j
k

j
kj j j

k kj j

j
k

δ α λ
δ

j jμ δ δ
α λ

δ

⎧ ≥
⎪⎪
⎨= < <
⎪
⎪ =⎩

α λ  (7) 

where jα  is a parameter that defines the membership function of the coefficients. 
The third step corresponds to the detection decision. In order to give a unique indicator, the various 

fuzzy coefficients are considered as partial criteria and the detection problem is regarded as a fuzzy decision 
making one with partial criteria. Fuzzy decision making allows formal modelling of decision-making for 
imprecise and uncertain conditions. The decision (here the detection decision) is considered as a fuzzy set 
described by its membership function dμ  that is computed using the membership functions of the various 
partial points of view on the final decision : ( )ic d

( ) ( ) ( )( )1 2, ,...,d ph c d c d c dμ =  (8) 

where h is a fuzzy set operator to be determined in function of the properties that are required for the 
decision. 

When a singularity occurs in the signal, at least one level of decomposition must reveal its appearance, 
and the singularity may not be present over all scales. Thus, (9) is proposed for the detection decision: 

1 max ( ); 1 :j
k kj

D jμ= = J

j J=

k−

 (9) 

From a practical point of view, it can be observed that the wavelet coefficients may be very small, 
during a very short time, even when there is a singularity in the signal. Thus (10) may be preferred to (9), to 
favor a clearer decision:  

2 max{max( ); 0: 1}; 1:j
k k lj

D l Nμ −= = −  (10)
where N is a small time window. [18] proposes a comparison of different aggregation operators to 

detect extra vibrations (considered as faults) in a rolling mill. 
For fault isolation, the singularity appearance must modify differently the various levels of 

decomposition, depending on the considered fault. A learning phase shows which levels are modified by a 
specific fault. For example, consider a signal that is decomposed over 5 levels. Moreover, suppose that the 
wavelet coefficients on levels i and j are modified by the fault, while the coefficients on levels k, l, m are not 
modified. This situation can occur for instance when the fault gives rise to oscillations in a specific 
frequency range as reported by [3] for electrical drives or [17] for rolling mills. The isolation decision for 
this specific fault can be given by:  

( )3 min , , (1 ), (1 ), (1 )i j k l m
k k k k kD μ μ μ μ μ= − −  (11)

The decision rule D3 expresses that the coefficients on levels i and j must be “high” at the same time, 
and the other coefficients must be “small”, to decide that this fault is present. 

For a wide range of applications, particular additive frequency contents are related to the occurrence of 
a particular fault (e.g. faults in rolling mill process or abnormalities such a broken rotor bars in induction 
motor). In other applications, the signals recorded on the process exhibits impulses in amplitude or a pseudo 
frequency occurrence when a fault occurs. All these situations can be handled with SWT. Table 3 gives three 
academic examples that illustrate these situations.  
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The parameters are f = 50Hz, f1 = 20Hz, f2 = 350Hz, f3 = 175Hz. Scenario 0 corresponds to the 
reference signal (i.e. “normal” behavior): it corresponds to a noisy sinusoidal signal. ε is a Gaussian white 
noise with zero mean and variance σ² chosen such that the Signal-to-Noise Ratio is .  10SNR dB≈

In scenario 1, extra frequency contents f1 and f2 occur at time 1t τ=  during a time interval 2 1τ τ−  and 
another additive frequency f3 occurs at instant 3t τ=  during a time interval 4 3τ τ−  ( 1 2 3 4τ τ τ< < τ< ). 
Scenario 2 corresponds to a fault characterized by the appearance of periodic impulses while scenario 3 deals 
with the appearance at time 1t τ=  of a pseudo frequency of duration 2 1 0τ τ− > . 

Table 3. Scenario and simulated signal 
Scenario 

no. Simulated signal 

0 ( )( ) sin 2 ( )refx t ft tπ ε= +  

1 ( ) ( ) ( )1 1 2 1 2 3 3 4( ) ( ) 0.7(sin 2 sin 2 )( ( ) ( )) 0.7sin 2 ( ( ) ( ))refx t x t f t f t u t u t f t u t u tπ π τ τ π τ τ= + + − − − + − − −

2 1
2 1

1
( ) ( ) 40 ( 1) ( )

n
k

ref
k

x t x t t kδ τ+

=

= + − −∑  

3 ( )10.25(2 )
3 1 1 2( ) ( ) 2 sin(2 ) ( ) ( )f t

refx t x t e f t u t u tπ π τ τ−= + − − −  

 
In order to detect and isolate the faults described in scenarios 1 to 3, some parameters of the SWT must be 

discussed. The sampling frequency fe of the signal and the number of decomposition level of the wavelet 
transform are related to the frequency that must be detected. Actually, the SWT can be performed with 
different wavelets. For instance, the Mallat wavelet is used in [16] for detection and identification of faults in 
HVDC systems. The Morlet wavelet has been used in the literature for the analysis of vibration signals 
recorded on rotating machineries [17]. This is due to the fact that the Morlet wavelet is able to pick up 
impulses generated by the rotating elements. Other wavelets are used in the literature but the Daubechies’ 
wavelets [4] are used in a wide range of applications [13, 14]. This is certainly due to their “nice” properties 
(compact support, number of vanishing moments, orthogonality, etc.). 

For the examples in Table 3, a wavelet decomposition over 5 levels (J = 5) is sufficient to ensure a good 
detection. The sampling frequency is equal to 1 kHz. The Daubechies 12 “db12” wavelet has been used 
because it is able to highlight the “faulty” extra frequency contents. The thresholds λj have been computed 
with the reference signal xref. x1, its SWT decomposition and the thresholds dj are given in Figure 5. 
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Figure 5. The signal x1 and its SWT decomposition 
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Figure 6 Fuzzyfication of the thresholded coefficients 

The SWT coefficients d5 and d1 clearly exhibit the extra frequency contents f1 = 20Hz and f2 = 350Hz. 
This can be explained by the dyadic split of the frequency domain. The other extra frequency content is 
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characterized by . It is exhibited in the coefficients d2 on the second level of decomposition. The 
threshold’s coefficients are fuzzyfied with the membership functions  calculated with (7). The 
result is shown in Figure 6. The abnormality in each frequency band is clearly exhibited. 

3 175Hzf =

, 1:j jμ = 5

The fault detection indicator FD is computed with (10). It measures the appearance of an abnormal 
behavior over all the levels of decomposition. When fault isolation is considered, specific aggregation 
operators must be defined. These new operators take into account some knowledge on the kind of singularity 
that appears when a particular fault occurs. Thus, the fault isolation decisions that are defined are given by: 

( ) ( ) ( ){ }1 1 2 3 4min , 1 , 1 , 1 ,FFI 5μ μ μ μ μ= − − − ; ( ) ( ) ( ) ( ){ }2 1 2 3 4min 1 , , 1 , 1 , 1FFI 5μ μ μ μ μ= − − − −  (12)

Results are shown in Figure 7. 
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Figure 7. The signal x1 and FD, FIF1, FIF2 

It can be observed that the isolation decision FIF1 that is devoted to the detection of frequencies f1 and 
f2 clearly identifies this fault. Identically FIF2 is able to detect the fault characterized by f3. 

For the second and third scenario the fault detection and isolation procedure is similar to the one 
presented for scenario 1 but the decision rule that takes into account all the decomposition levels could be 
different. 

5. CONCLUSIONS 

The diagnostics procedures are based on the observed analytical and heuristical symptoms and the 
heuristic knowledge of the process. In this paper a comparison between different methods of fault detection 
and an overview of the fault detection and diagnosis procedure for technical system is provided. For some 
classes of processes the structure and some parameters are well known but for others only rough models are 
available. Therefore the methods for fault detection and diagnosis are mainly different.  

Two examples of process model/signal based FDD methods were illustrated within the paper. 
A process model based approach for FDD was presented based on analytical relations between 

characteristics of analyzed process and on the measured signals, also. However, in many processes the 
sensors and actuators already exist for control and supervision purpose, but the analytical relation between 
the measured signals is not exploited. In these cases the approach can easily improve the process supervision.  

Analytical model’s parameters have been used to generate the suitable equations to detect and isolate 
faults. A powerful method for this purpose seams to be building residuals with parity equations support. The 
set of affected and unaffected residuals points to the fault location. Design of the parity equations is suitable 
for processes with more than one measured output. Herein, MIMO processes were considered. For each 
residual it was set a suitable threshold that allows detection or isolation decision for a fault by monitoring the 
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residual deflections. The residual sensitivity depends on parity equation parameter and input measured 
signals. It was underlined that detection of a fault depends on the most sensible residual but, in the mean 
time, the fault isolation depends on the less sensible residual (no the decoupled one). 

The capability for the stationary wavelet transform to deal with different faults for fault detection and 
isolation has been investigated. A detection procedure based upon the thresholds of the wavelet coefficients 
has been considered. These coefficients are fuzzyfied and aggregated in order to provide a symptom. The 
tuning parameters of this procedure are the wavelet itself, the number of decomposition levels, the thresholds 
and the decision method. The wavelet choice depends on the features that must be detected in the signal 
under analysis. This selection is sometimes not unique. For detection purpose, the final choice is made in 
order to maximize the symptom sensitivity. 
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