
      THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, 
      OF THE ROMANIAN ACADEMY                                                                                 Volume 9 , Number 3/2008 , pp.000-000 
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This paper presents some remarks regarding the applicability limits of seismic base isolation 
technology.  First, is make mention about restraints give by building and site natural periods and then 
some considerations regarding the nonlinear calculus necessity are exposed. 
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1. INTRODUCTION 

The fundamental concept of the base isolation systems is to isolate a structure from ground motion by 
introducing a flexible interface between the foundation and the base of structure, thus limiting the amount of 
forces that can be transferred to the superstructure and thus diminish the structural demand.  

These attractive capacities make from base-isolation method a mainstream design option for seismic 
hazard mitigation over the past few decades [10], [13]. However, this excellent strategy is not suitable for all 
buildings and for all emplacements. 

Because of lateral flexibilization, the natural period of the past fixed-base structure undergo a jump 
towards large values and the new base-isolation structure has a new and bigger natural period. This positive 
period-shift can extract the structure away from the characteristic period contents of earthquake ground 
motions or, per contra, can throw the structural ensemble into resonant conditions. Therefore, a first restraint 
is connected to the natural periods of structure and emplacement site. A succinct analysis of these period 
conditions make the object of chapter two. 

The period-shift depends on strength and damping characteristics of materials or devices from isolation 
and site layers that exhibit nonlinear behavior which imposes a new restraint category linked by nonlinear 
shift determination. In chapter 3 for necessary period-shift evaluation a double step method based on the 
dynamic magnification functions is presented. First, assuming linear behavior for isolated-base structure one 
obtain an estimation of necessary period jump and then in the second step a nonlinear sdof (NKV model[3]) 
is used in order to evaluate the influence of the non-linear properties on linear period-shift assessment. 

2. NATURAL  SITE CONDITIONS 

By introducing an isolant layer with reduced stiffness the structural base isolate ensemble, acquire 
expanded lateral flexibility. As a result of flexibilization, the natural period of the past fixed-base structure 
undergoes a jump and the base-isolation structure acquire a new natural period. The flexibility of the 
interposing layers between structure and its foundation lead to a bigger fundamental period for structural 
ensemble. Due to this augmentation trend – only towards large periods -  base isolation technology is not 
suitable for all buildings. In terms of structure and site natural periods the isolation technology can avoid the 
dangerous effects of resonant conditions or contrary, can place the structure in the resonant conditions. 

If the natural period of a fixed-base structure is too close to the dominant site period and the resonant 
danger exists, the period shift provoked by isolation layer can extract the structure from resonant zone. But in 
this case must avoid the excessive flexibilisation. If the natural period of the fixed-base structure is inferior 
to dominant site period the shift period due to isolation layer can bring the structure into resonant conditions. 

From this reasons, most suitable candidates for base isolation technology are low to medium-rise 
structures rested on hard soil underneath. High-rise buildings or buildings rested on soft soil are not suitable 
for base isolation. But, a general rule is not exists. Only a careful analysis of building and site natural periods 
can show if the base-isolated technology are proper or not. 
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3. NONLINEAR CONSTAINTS 

3.1 Linear assessment of necessary period-shift  

For a qualitative evaluation of the dynamic behavior, one can consider the structure with fixed base as a 
linear single-degree-of-freedom (sdof) subjected to harmonic abutment accelerations: 

( ) 0 sing gx t x t= ω  (1)

where  is the acceleration amplitude and ω is the excitation pulsation.   
In linear dynamics, a usual description of such sdof behavior is given by the Kelvin-Voigt model 

consisting of a mass m supported by a spring (with a stiffness k) and a dashpot (with a viscosity c) connected 
in parallel. The governing equation of this system is [11]: 
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By using the change of variable   and by introducing a new "time" function  0tτ = ω ( )0( ) ( ) /x t xϕ τ = = τ ω   
[3] one obtains from eq. (3) a dimensionless form of the equation of motion: 

sinC K′′ ′ϕ + ϕ + ϕ = μ υτ  (5)

where the superscript accent denotes the time derivative with respect to τ and: 
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Steady-state solution of the equation (5) read as: 

( ) ( ), , , sin( )ϕ τ υ ζ = μΦ υ ζ υτ − ψ  
(7)

where  is the magnification function: 
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a ratio of maximum dynamic amplitude  to static displacement max dynamicxϕ ≡ staticxμ = . 
Usually, in the structural dynamics is used the natural T0  (or impute T)  period instead of natural ω0 (or 

excitation pulsation ω). Because  the dimensionless pulsation is 2 /T = π ω 0 0/ T T/υ = ω ω =  and the 
magnification function (8) become: 
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(9)

 The magnification functions (8) and (9) for .ctζ =  have the typical aspect depicted in fig. 1. 
 The magnification function can now be used to illustrate the structural behavior before and after period 
jump, that is to illustrate the behavior differences between structure with fixed base and the same structure 
but with isolator layer. If the natural period of the structure is too close to the dominant period of the seismic 
input and resonant danger exist, the structural natural period must change until the dynamic magnification 
amount became tolerable. 
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Fig. 1  Magnification function in terms of frequency or period Fig. 2 Period-shift example 

 To illustrate this magnification functions ability a case study is presented in fig.2. Let a structure with 
following mechanical characteristics: 030000 kg ;  0.3 s ; 5%m T= = ζ =  [18]. If such structure is located on 
a usual site, composed, for example, by consolidated aluvionary deposits, this structure become a proper 
candidate for isolated base technology. In this case, an period-shift from resonant period  to the 

takes out the structure from dangerous resonant zone and leads to a great reduction of the dynamic 
magnification amount.  

0 0.3 sT =

0 0.5 sT =

3.2 Effects of the isolator layer nonlinearity on period-shift 

 In chapter section 3.1, a first approximation of the period-shift amount was based on linear magnification 
functions, therefore on linear behavior hypothesis for the base-isolated structure. However, an isolated-base 
structure has nonlinear behavior due to the nonlinearity of the materials and devices from his isolator layer. 
See, for example, in fig. 3 a resonant column test performed upon rubber sample that exhibits an evident 
softening nonlinearity [4] and in fig.4 the hardening behavior of a rubber-pendular isolator [16].  

For make apparent the linear-nonlinear differences another numerical nonlinear simulation study was 
performed using the same structure from chapter section 3.1. The nonlinear behavior was modeled by 
nonlinear Kelvin-Voigt model based on replacement of the dynamic linear characteristics – the spring 
stiffness k and the damper viscosity c, by functions in terms of displacements: ( )k k x= and ( )c c x= , 
experimentally obtained [3]. 

Fig. 3  Softening behavior of a rubber sample Fig. 4 Hardening behavior of an isolator 
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For this non-linear simulation the non-
linear aspect of the material functions ( )k k x=  
and  ( )c c x=  was build by extension starting to 
own test performed upon rubber [4] and 
experimental data performed upon different 
isolators given in [1], [7], [12], [16], [19] (fig. 5). 
 In order to compare the nonlinear results 
with the linear calculus from chapter section 3.1 
the initial values of the nonlinear damping 
function  were scaled for coincide with the 
constant values of the linear behavior hypothesis 

( )0 0 0.05ς = ς =   and the initial value of stiffness 
function  ( )0k k= 0 was put in correspondence 
with the natural period of the isolated-base 

structure: 2
0 0 0 0 4733 kN/mmω =

 
Fig. 5 Material functions used in simulation 

0

20.5 s  12.56 rad/s  
T
π

= ⇒ ω = ⇒T k . =

Using nonlinear dynamic material functions ( )k k x=  and ( )xς = ς , as like in fig.5, the differential 
equation of the nonlinear sdof system can be write as an extension of eq. (5): 

( ) ( ) sinC K′′ ′ϕ + ϕ ⋅ ϕ + ϕ ⋅ ϕ = μ υτ  (10)

where μ  and  has the same expression as in eq.(6) and: υ

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )2

0 0

2      ;     
0 n

c x k x k x
C C x x K K x k x

m m k
ϕ ≡ = = =

ω
 (11)ϕ ≡ = = ζ

ω

The solution of the equation (10) can be writing like eq. (7): 

( ) ( ), sin( )  (12), , , ,ϕ τ υ μ ζ = μΦ υ μ ζ υτ − ψ

where ( , ,Φ υ μ )ζ  is the non-linear magnification function, a loads dependent material function through 
transformed amplitude μ. 

For given amplitude μ and relative pulsation υ, the 
nonlinear equation (12) can be numerically solved using 
a computer program based on Newmark algorithm [14]. 
After this, from known solution and known excitation 
input, the non-linear magnification functions can be first 
obtained in term of normalized pulsation υ and then in 
term of period T . 

Fig. 6  Nonlinear period-shift dispersion 

 The simulation results are summarized in fig.6. In 
the foregoing chapter, assuming a linear material 
behavior a period jump from 0.3 s to 0.5 s seems to be 
enough for take out the structure from dangerous 
resonance zone. But, as can see in figure 6, the nonlinear 
characteristics of the isolator layer change the linear 
period-shift estimation and can lead either to dangerous 
shortening shift in case of hardening nonlinearity or to 
unnecessary shift  enlargement in case of  softening 
nonlinearity. 

This simulation prove that by neglecting this period-shift dispersion the main purpose of the base-
isolation technology – the drawing out of structure from dangerous resonant zone - can be compromise. 
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3.3 Effects of the soils nonlinearity on period-shift 

The strong dependence of the soils dynamic properties on strain or stress level produced by external 
loads is very well known. In the previous author's papers [2], [3], [5] this nonlinear behavior was modeled 
assuming that the geological materials are nonlinear viscoelastic materials. The dynamic model obtained was 
built upon two dynamic nonlinear functions – one for material strength modeling  and another including 
material damping , both in terms of strain level   generated by external loading conditions and both functions 
being completely determined from resonant column test data. 

This nonlinear behavior is meeting, more or less, at all site materials – more pronounced at soft 
degradated materials (soils) and more reduced at rocks materials. However, is experimentally observed that 
all the site materials have the softening nonlinearity type. For example, in the next, some nonlinear dynamic 
material functions for two extremely different site materials, one for a soft material (clay) in fig. 7 and 
another for rock material (limestone) in fig.8, is presented.  

Using these material functions, by nonlinear simulations the nonlinear magnification functions are 
obtained as can see in figs. 9 for clay and in fig.10 for limestone. From these figures results that the softening 
nonlinearity type of all site materials leads to the enlargement tendency of the period-shift, more pronounced 
at soils and more reduced at rocks.   

Fig. 7  Material functions for a clay sample Fig. 8  Material functions for a limestone sample 

 

Fig. 9 Typical nonlinear magnification functions for clay Fig. 10 Typical nonlinear magnification functions for limestone
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CONCLUDING REMARKS 

 Based on the aforementioned simulations results the following remarks can be drawn: 
• From the beginning, we must keep in mind that not any structure can be correct located on any 

emplacement and certain emplacements get along only with certain buildings, depending on their natural 
periods.  

• The linear and nonlinear magnification functions prove to be proper tools for necessary period-shift 
assessment.  

• The period-shift from fixed-base to isolated-base of the same superstructure depends on nonlinear 
characteristics of the isolator and site layers.  Thus, a first linear shift estimation must to be corrected in 
terms of nonlinear characteristics of isolator layer and site materials.  

• The nonlinear magnification functions have different shapes in comparison with the linear one. The 
resonant amplitude peaks are displaced towards high periods for softening stiffness and towards low 
periods for hardening stiffness and thus can leads to dangerous shortening or unnecessary lengthening of 
the linear shift evaluation.  

• Neglecting these nonlinear period-shift variations by using only linear assessment of necessary period-
shift, the main purpose of the base-isolation technology – the drawing out of structure from dangerous 
resonant zone - can be compromise. 
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