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An approach to the material degradation modeling is advanced in this paper on the base of the fabric 
tensors concept. Fabric tensors describe directional data like microcrack distributions and 
microstructural anisotropy in the material. Microcrack distributions within the material are used in 
the characterization and evaluation of damage. The damaged second- and third-order elastic constants 
for a caesium dihydrogen phosphate crystal are evaluated. 
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1. INTRODUCTION 

Damaged materials form a class of unusual elastic materials that show extreme nonlinearity, hysteresis 
and discrete memory. This class includes pearlitic steel, fiber-reinforced metal matrix composites, cement, 
concrete, ceramics, rocks, sand, soil etc. The bond systems consist of a fabric of defects (cracks, voids) that 
participates in the elastic response of the material. The grains have a random position and the intergranular 
interfaces contain cavities, microvoids, defects [1]. For most real materials the influences of the internal 
structure and the nature of the layer-like bonding are reflected not only in the values of the second-order 
elastic constants, but also in the values of higher-order elastic constants and particularly that of the third-
order elastic constants [2]-[4]. These constants reflect the properties of materials. This paper is devoted to the 
analysis of the damage in materials, which are aggregates of grains which act as rigid vibrating units, while 
the contacts between them - the bond system - constitute a set of interfaces that control the behaviour of the 
material. At the mesoscopic scale, the micropolar continuum mechanics possesses a great potential to 
describe the long-range interactions among the particles in materials [5]-[7]. The interfaces are mesoscopic, 

with a typical size of 1  [8]-[9]. The theory of continuum damage mechanics was introduced in [10] for 
the isotropic case of uniaxial tension and later modified for creep in [11]. The damage variable is interpreted 
as the effective surface density of microdamages per unit volume. Kachanov has introduced the concept of 
effective stress, based on considering a fictitious undamaged configuration of a body and comparing it with 
the actual damaged configuration. The constitutive equations of evolution developed to predict the initiation 
of microcracks are basic on the damage variable [12]-[14].  

μm

The fabric tensors are introduced to model the damage mechanics by Voyiadjis and Kattan in 2005 
[15]. Fabric tensors describe directional data like microcrack distributions and microstructural anisotropy in 
the material [16]. In this paper, the fabric tensors are used to characterize the damage in materials by 
describing the directional data and anisotropy. The proposed development is relevant for anisotropic 
materials, where inelastic deformations are accompanied by material degradation due to the evolution of 
microcracks. The degradation is measured by a decrease in the elastic constants values. As an example, the 
damaged second- and third-order elastic constants for a caesium dihydrogen phosphate crystal are 
evaluated. 
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2. THEORY 

 The idea of fabric tensors with regard to the distribution of directional data is introduced by Kanatani 
[17]. He used fabric tensors for the stereological determination of structural anisotropy. A distribution of 
microcracks that is radially symmetric with respect to the origin is considered here. Let us denote by ( )n  , 

1,...,M  , the unit vector specifying the orientation of the microcrack  , where M  is the total number of 
microcracks. The orientation distribution function is denoted by ( )f N , where the second-rank tensor N  is 
defined as [17] 

( ) ( )
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The function ( )f N  can be then expanded in a convergent Fourier series as  
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where , ,  are zero-rank (scalar), second-rank, and fourth-rank fabric tensors, respectively, and (0)G
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ijk ( )lF N  are zero-rank (scalar), second-rank, and fourth-rank basis functions, respectively. By 

denoting , the surface of the unit sphere, the definition of fabric tensors is given by [18]-[20] S
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where   is the integration parameter. Only the first three terms in the expansion (2.2) are enough to 
describe material anisotropy. Therefore, we neglect the higher terms in the expansion and retain only the first 
three terms. The approximation of the distribution function 

A

( )f N  given in (2.2) characterizes anisotropy. 

The scalar  describes the special case of isotropy, the tensor  describes orthotropy with three 

orthogonal planes of symmetry and all three eigenvalues being distinct. The case of transverse isotropy is 
characterized if the second-rank tensor  has only two distinct eigenvalues. The tensor describes the 

materials with highest cubic symmetry and all kinds of anisotropy.  
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The second-order elastic constitutive relation for the damaged material is written in the actual damage 
state as [4] 

1 1
(1 )
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where  is the stress tensor, ij , ,

1
(

2ij i j j iu u   ) is the strain tensor (the Lagrangian linear strain tensor), 

 the displacement gradient,  is the second-order elastic constants of the damaged material and 

 is the third-order elastic constants of the damaged material. A similar elastic constitutive relation can 

be considered for a fictitious state of the material which is totally undamaged, i.e. all damage in this state has 
been removed. This fictitious state is assumed to be mechanically equivalent to the actual damaged state of 
the material, from the elastic strain equivalence or elastic energy equivalence point of view. By denoting 

,i juijh 

ijklmnC
ijklC

ij  

the effective stress tensor (the stress applied to a undamaged fictitious state of the material), ij  the  effective 

strain tensor, ,ij i jh u  the effective displacement gradient, jklC  the second-order elastic constants of the 

undamaged material and ijklmnC  the third-order elastic constants of the undamaged material, we can write 
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The pair tensors , ijklC ijklC  and , ijklmnC ijklmnC  can be related by the following relations 

0 (1)( )ijkl mn pq ijkl mnpqC G I G I C  , 0 (1) (2)( )ijklmn pq rs rsuv ijklmn pqrsuvC G I G G I C   ,     (2.6)

where and  are the unity tensors. ijklI ijklmnI

From (2.6) it results that the elastic strain tensor ij  and the displacement gradient  in the actual 

damaged state, are related to the effective elastic strain tensor 
ijh

ij  and respectively, the effective displacement 

gradient ijh in the fictitious state, by the laws 

( )ij ijkl klI f N   , ( )ij ijkl klh I f N h ,     (2.7)

where the function ( )f N is given by (2.2) 
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By substituting (2.7) into (2.5), we obtain 
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and by substituting (2.6) into (2.4), we have 
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The equations (2.8) and (2.9) relate the actual state stress to the fictitious state stress. From this point, 
the specific strain energy functions U , U   for damaged and undamaged material can be written from (2.7)-
(2.9), respectively 

1

2 ij ijU    . (2.10)

From (2.10) we can obtain a scalar damage  which relates the actual strain energy to the fictitious 

strain energy 



1

U
U 

 
, . 1  (2.11)

Damage development can be described by different values , when .       . `                                                   1  1 

3. THE CASE OF A MONOCLINIC CRYSTAL 

The elastic behaviour of ferroelectric crystals is correlated with the microstructure and layer-like 
structure of the material [21] For a caesium dihydrogen phosphate lattice the damage due to the microcracks 
and microstructural anisotropy is reflected not only in the values of the second-order elastic constants but 
also in the values of higher-order elastic constants and particular that of the third-order elastic constants.  

Consider a monoclinic crystal having a rectangular form of thickness , length  and width  with 
respect  to the Cartesian axes . The Cartesian axes have a standard orientation with respect to the 
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crystallographic axes (fig.3.1).  The axes and  are perpendicular to , but not to each other. The 

Cartezian coordinate system is located in the upper plane of the crystal with the  axis normal to this plane. 

The origin point is the intersection of the diagonals, and the crystal edge is located at 

cba ,, a c b

x3

2/2 lx   and 

. The crystal contains a set of microcracks oriented in such a way that the normal to half of these 

microcracks has an angle θ = 90° while the normal to the other half has an angle θ = 0°. From (2.1) we obtain 
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The values of undamaged elastic constants are found in [3]. The values of damaged elastic constants 
are calculated from (2.6). 

 

Fig.3.1. Axes of a monoclinic crystal. 
 

In the monoclinic system we have 13 independent second-order elastic constants and 32 third-order 
elastic constants 
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Tables 3.1 and 3.2 show us the values of damaged elastic constants compared to the values of 

undamaged elastic constants. It is observed that the effect of the microcracks presence is a decreasing of the 
values for the second- and third-order elastic constants.  

From tables, we see that the second-order elastic constants suffer a damage which is larger than the 
damage of the third-order elastic constants. The ratio between the undamaged and damaged values is about 
1.4 for second-order elastic constants and about 1.32 for the third-order elastic constants. The value of the 

scalar damage  is calculated from (2.11), and it is  0.277. If introduce the constants ratios 
C

1
C 

 
, 

, we obtain approximately 0.285 for the second-order elastic constants, and 0.242  for the third-

order elastic constants. It results from here that (2.11) represents a measure for the elastic constants damage.  

   1 

 
 
 
 

Table 3.1  The damaged second-order elastic constants compared to the undamaged elastic constants [3] 
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Elastic 
constant 

Damaged values 
[GPa] 

Undamaged 
values [GPa] 

Chiroiu et al.[3] 

Elastic 
constant 

Damaged values 
[GPa] 

Undamaged 
values [GPa] 

Chiroiu et al.[3] 

11C  20.49 28.83 26C  6.75 8.40 

12C  8.32 11.40 33C  46.73 65.45 

13C  30.76 42.87 
36C  5.36 7.50 

16C  3.66 5.13 44C  5.84 8.10 

22C  19.23 26.67 
45C  - 1.60 - 2.25 

23C  10.38 14.50 
55C  3.75 5.20 

  
 

Table 3.2  The damaged third-order elastic constants compared to the undamaged elastic constants [3] 
 

Elastic 
constant 

Damaged values 
[GPa] 

Undamaged values 
[GPa] 

Chiroiu et al.[3] 

Elastic 
constant 

Damaged values 
[GPa] 

Undamaged 
values [GPa] 

Chiroiu et al.[3] 

111C  - 33.45 - 44.22 
233C  -9.44 -12.50 

112C  - 24.82 - 32.80 
236C  -9.87 -13.00 

113C  - 23.86 - 31.50 
244C  11.07 14.65 

116C  9.64 12.75 
245C  - 9.52 - 12.50 

122C  11.32 14.95 255C  9.82 12.00 

123C  11.05 14.60 
266C  - 8.64 - 11.50 

126C  7.38 9.75 
333C  17.42 23.00 

133C  - 8.52 - 11.25 
336C  -9.55 -12.50 

136C  - 16.13 - 21.30 
344C  -17.41 -23.00 

144C  10.17 13.35 
345C  17.09 22.50 

145C  -6.61 -8.60 355C  - 9.68 - 12.65 

155C  -7.35 -9.65 
366C  -10.22 -13.50 

166C  -23.86 -31.50 
446C  11.36 15.00 

222C  -11.02 -14.55 
456C  9.45 12.50 

223C  -7.23 -9.55 
556C  17.06 22.50 

226C  17.42 23.00 666C  -10.23 -13.50 

4. CONCLUSIONS 

In this paper, the continuum damage mechanics is analysed through the concept of fabric tensors within 
the framework of nonlinear elasticity theory. A model of microcrack distributions data for the damaged 
materials is formulated by using fabric tensors. Fabric tensors describe microcrack distributions and 
microstructural anisotropy in the material. Microcrack distributions within the material are used in the 
characterization and evaluation of damage. The microstructure is related, through the use of fabric tensors, to 
the second-order and the third order elastic constants. As an example, the damaged second- and third-order 
elastic constants for a crystal of caesium dihydrogen phosphate are evaluated for a given set of microcracks. 
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