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The effective Young’s modulus of an auxetic composite is the aim of this paper. The composite is 
made up of alternating layers of auxetic material (with a negative Poisson’s ratio) and aluminum. The 
problem is solved in the light of Cosserat elasticity which admits degrees of freedom not present in 
classical elasticity, i.e. rotation of points in the material and couple stresses. The enhancement in the 
Young’s modulus for auxetic over nonauxetic materials is reported. 
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1. INTRODUCTION 

The auxetic material (with negative Poisson’s ratio ν ) is not a continuous medium. It has unique 
properties, instead of getting thinner like an elongated elastic band, it grows fatter, expanding laterally when 
stretched  (Rosakis, Ruina and Lakes [1], Lakes [2]− [4]). Love [5] presents an example of cubic single 
crystal pyrite as having a Poisson's ratio of − 0.14, and he suggests the effect may result from a twinned 
crystal. Typically mechanical properties (for example indentation resistance and shear modulus) are 
inversely proportional to  or . The negative limit of 2(1 )− ν (1 )+ ν ν  for isotropic materials is 1− , and 

 or  tend to zero, leading to enhancements in the material properties for auxetic over 
nonauxetic materials. The idea is to transform a non-auxetic material into auxetic form as foams or cellular 
materials, or to employ new techniques for architecture new auxetic materials (honeycombs, fiber-reinforced 
and reentrant polymer foams and composites). 

2(1 )− ν (1 )+ ν

The classical mechanics fails if it is extended to describe the behavior of auxetic materials, because 
these materials develop couple moment stresses that bend the internal connecting ligaments (Burns [6]). The 
cell ribs transmit bending moments, tensile and compressive forces. These bending moments can be 
incorporated as hidden variables in a continuum description. That is the couple stresses from Cosserat 
elasticity (Cosserat [7], Kröner [8], Berglund [9]). The auxetic materials imply the chiral effects. That is the 
properties are described by a fifth rank modulus tensor, which changes under an inversion. In this paper we 
specialize in Sec.2 the theory of the auxetic material described as a chiral Cosserat medium. The formalism 
of determining the effective Young’ s modulus for an auxetic composite is presented in Sec.3 by using the 
Bécus homogenization technique. The enhancements in Young’ s modulus for auxetics are reported in this 
section.  

2. THEORY 

 Consider a chiral Cosserat medium in a Cartesian coordinates system ( , , )x y z  equations of motion 
for the case without body forces and body couples are (Eringen [10], [11], Mindlin [12], [13], Gauthier [14])  

. The

,  , 0kl k luσ −ρ = , 0rk r klr lr km j+ ε σ −ρ ϕ = . (1)
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Here  is the stress tensor,  is the couple stress tensor, u  is the displacement vector, klσ klm kϕ is the 
microrotation vector which in Cosserat elasticity is cinematically distinct from the macrorotation vector 

, and is the permutation symbol. We remember that ,klmr u1/ 2k = ε m l klmε kϕ  refers to the rotation of points 
themselves, while  refers to the rotation associated with movement of nearby points. In (1) ρ  is the mass 
density and 

kr
j  the microinertia. The constitutive equations are 

1 , 2 , 3 ,

, , , 1 2 3 3 2

(2 ) ( ) ,
( ) ( ) (

kl rr kl kl klm m m r r kl k l l k

kl r r kl k l l k rr kl kl klm m m

e e r C C C
m C e C C e C C
σ = λ δ + μ + κ + κε − ϕ + ϕ δ + ϕ + ϕ

= αϕ δ +βϕ + γϕ + δ + + + − ε − ϕ ),r
 (2)

where   is the macrostrain vector. . ,1/ 2( )kl k l l ke u u= + λ , and μ  are Lamé elastic constants,  κ  is the 
Cosserat  rotation modulus, , the Cosserat  rotation gradient moduli, and  are the chiral 
elastic constants associated with noncentrosymmetry. For 

, ,α β γ , 1,2,iC i = 3
0iC =  the equations of isotropic micropolar 

elasticity are recovered. For 0α =β = γ = κ = , (1) reduces to the constitutive equations of classical isotropic 
linear elasticity theory.   

In this paper we do not introduce the requirement that the internal energy must be nonnegative (the 
material is stable) in order to obtain restrictions on the micropolar elastic constants. The condition of a 
positive Young’s modulus and 1 0− < < .5ν  corresponds to the usual range of properties for stability of an 
unconstrained material. The existence of negative material constants (shear modulus, bulk modulus, 
stiffness) is also permitted (experimentally reported in Teodorescu, Badea, Munteanu and Onisoru [15]). For 
most materials, the shear modulus is two times to three times greater than Young's modulus, most commonly 
though 0.3=ν .The initial conditions are  

0( , , ,0) ( , , )i iu x y z u x y z= , ( , , ,0) 0i x y zϕ = , 1,2,3i = , 
( , , ,0) 0ijm x y z = ,  ( , , ,0) 0ij x y zσ = ,   3i j= ≠ .        (3)

Consider the case of the laminated plates made up of a periodic layering of sheets normal to the 
direction x  of wave propagation, each of elastic material with constant properties. For simplicity, without 
loss of generality, the particular 2D case in which all quantities depend only on x  and  is considered.  z

Let  be a set composed of the asymmetric tensors , , , 
, and the vectors , .  We call  an elastodynamic state on the bounded medium, if it 

satisfies (1)−(3). The theory is based on the following theorem: 

F
,3

{ , , , , , 1,2,3}kl kl k km u k l= σ ϕ =

ku kϕ
klσ klm kle

, 1,2k l = F

 
THEOREM 1.The one-by-one transformation  

2
1 10 1 2 3ˆ ( )u K u u u= + − ,  , , 2

2 11 2 3 1ˆ ( )u K u u u= + − 2
3 12 3 1 2ˆ ( )u K u u u= + −

2
1 10 1 2 3ˆ ( )Kϕ = ϕ + ϕ − ϕ ,  2

2 11 2 3 1ˆ ( )Kϕ = ϕ + ϕ −ϕ , 2
3 12 3 1 2ˆ ( )Kϕ = ϕ + ϕ − ϕ , 

with 
2

2 2 3
10

( )
4(2 )( )

C CK +
=

μ + κ β + γ
, 

2
2 2 3

11
( )

4(2 )( )
C CK −

=
μ + κ γ −β

, 
2

2 1 2 3
12

(3 )
4(3 2 )(3 )

C C CK + +
=

λ + μ + κ α +β + γ
, 

transforms the elastodynamic state  into another elastodynamic state F F̂� ˆˆ ˆ ˆ{ , , , , , 1,2,3}kl kl k km u k l= σ ϕ = , 
composed by the symmetric tensors ,  ,  σ̂kl ˆ klm , ˆkle , 1,2,3k l = ,  and the vectors  , that satisfies  
(1)−(3). The state  can be decomposited in the form 

ˆku , ˆ kϕ

F̂� 1
ˆ ˆ

2
ˆ= +F F F , where 1 11 13 33 22 1 3 2ˆˆ ˆ ˆ ˆ ˆ ˆ{ , , , , , , }m u uˆ = σ σ σ ϕF , 

. 2 22 11 13 3 2 1 3
ˆ ˆ ˆˆ ˆ ˆ ˆ{ , , , , ,m m u= σ ϕ ϕF 3ˆ,m }

êProof. The proof is immediately. We have . ,ˆ ˆ ˆ1/ 2( )kl k l l k lke u u= + = , and from (2) we obtain ˆ ˆkl lkσ = σ , 

. The state  verifies equations (1)−(3).  Then, we introduce (2) into (1). After a proper 
combination of equations, the following equations in 
ˆ ˆkl lkm m= F̂�

1 2 3ˆ ˆ ˆ ˆ( , , )u u u u=  and 1 2 3ˆ ˆ ˆ ˆ( , , )ϕ = ϕ ϕ ϕ  are found          
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2 2
0 0 ˆˆ ˆ( 2 ) ( ) (1 )u K u Kλ + μ + κ ∇∇ − μ + κ ∇×∇× + κ − ∇×ϕ = ρ ˆ,u

ˆj
 

2 2 2
0 0 0ˆ ˆ ˆˆ( ) (1 ) 2 (1 ) ,K K u Kα +β + γ ∇∇ϕ− γ ∇×∇×ϕ+ κ − ∇× − κ − ϕ = ρ ϕ  

(4)

with a coupling coefficient defined as 0K
2

2 1 2 3
0

( )1
( 2 )(

C C CK + +
= +

)λ + μ + κ α +β + γ
 (5)

We see that (4) are decoupled into two sets of equations in , and .                              1F̂ 2F̂
Each set of equations corresponding to  and  is solved in a similar way (Teodorescu, Munteanu 

and Chiroiu [15], Teodorescu, Munteanu, Badea and Onisoru [16], Chiroiu, Munteanus and Dumitriu.[17]). 
1F̂ 2F̂

3. A LAMINATED COMPOSITE PLATE 

As a study case, let us have a laminated 2D composite plate which occupies the region [0, ]x L∈ , 
, and made up of alternating the [ , ]z c c∈ − N  aluminum and auxetic material layers, normal to the direction 

x  of wave propagation (fig.1). The layers are parallel, planar, periodically, across which the displacements 
are continuous. The length of each layer is . The interfaces between layers are located at , , 
and each joint having two faces identified by 

l nl 1,2,...,n N=
+  and − . We choose coordinates so that the waves lie in the 

( , )x z  plane. The plate is assumed to be in plane strain and to support waves running in the x -direction. 
The motion equations are given by (4) with  given by (5). Let us to suppose that all material 

constants are functions of

2
0K

x . The equations (4) are decoupled into two sets of equations in , and . So, 
we will concentrate only to the set of equations corresponding to . The continuity of solutions ,  and 

 at the interface are given by 

1F̂ 2F̂

2v1F̂ 1v

2φ nl

1 1 1 1

( , , ) ( , , ) 1,3ii iv nl z t v nl z t
c c c c

− +ω ω ω ω
ω = ω , = , 2 2

1 1 1 1

( , , ) ( , ,nl z t nl z t
c c c c

− + )ω ω ω ω
φ ω = φ ω , 

for . To predict the Young’ modulus from the Lamé elastic constants λ , , we have the 
formula  

1,2,...,n = N μ

0
(3 2 )E λ + μ μ

=
λ + μ

. 

We are interested in knowing the influence of  the Cosserat  rotation modulus , the Cosserat  rotation 
gradient moduli , and the chiral elastic constants 

κ
, ,α β γ , 1,2,3iC i = , on the effective Young’ modulus value 

of the laminated plate. The material constants for this laminated composite are 
periodic functions of 

1 2 3{ , , , }C= λ , , , , ,C μ κ α β γ C C
x  

( ) (C x P C x+ = )

l

 

where  is the period equals to the length of the basic cell (for the composite  with l  the length of 
the basic cell for the composite).  

P 2P =

Let us to introduce a new length scale 

x
η =

ε
, (6)

where  is a parameter, so that (4) can be written as 0ε >
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2 2 *
3, , 1, 1, 4 2, 1

1 2

1[(1 ( )) ] ( ) ( )
( ) ( )z x xx zz za v v a v s

s s
− η + + η − η φ = v

η + η
, 

2 * 2
3, 4 2 . 3, 1, 3

1 2

1[ ( ) ( ) ] (1 ( ))
( ) ( )x x zz xza v s v a v v

s s
η + η φ + + − η =

η + η
, 

2 22 2
1 01 1

3 , 2, 2, 1, 2 22 2 2 2
0 4

2 ( ) ( )(1 ( ))( ) ( ) ( ) ( ) 1[ ]
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )x xx zz z

c Kc cv v
K s

η κ η − ηη μ η η μ η
− + φ + φ + + φ =
ω η γ η ω η γ η ω η γ η η η

φ . 

(7)

 

 
 Fig. 1. The laminated composite plate. 

The Bécus homogenization method via multiple scale expansion (Bécus [18]) consists in studying 
equations (7) as . The periodic variations of C  in (7) become frequent, so that the study of (7) will 
provide us some information on solutions for .  In view of (6), we have 

0ε→
0P →

1
x x
∂ ∂ ∂
= +

∂ ∂ ε ∂η
. 

The equations (7) can bee rewritten in terms of 1 3 2( , , ) { , , }iw x z t v v= ϕ , 1,2,3i = ,  

2 2 2 2
1

2 2 2

3
1 1 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ,

i i i i i i i i

i i i i i i

F w G w H w G w
t x z x

G w H w G w H
x z x z

−

− − −

∂ ∂ ∂ ∂
η = η + η + ε η
∂ ∂ ∂ ∂ ∂η

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ ε η + ε η + ε η +⎜ ⎟⎜ ⎟ ⎜ ⎟∂η ∂ ∂η ∂ ∂η ∂η∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
i

 (8)

with F ,  and H  are identified from (7). Upon expanding solutionsG 1 3 2( , , ) { , , }iw x z t v v= ϕ

P η

, ,  in 

powers of  , , where  are periodic of period  in , we derive from (8) 

1,2,3i =

ε
0

, , ) ( , , , )j
i ij

j
z t w x z t

=

η = ε η∑( ,w x ijw

( )
2

2 1
0 1 22

0 0
( ) ,j j

i ij ij
j j

iF w L L L w
t

− −

= =

⎛ ⎞ ⎛ ⎞∂
η ε = ε + ε + ε +⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠

∑ ∑ H  (9)

where 
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3

0 ( )i iL G w
x z

⎛ ⎞∂ ∂
= η⎜ ⎟∂η ∂η∂ ∂⎝ ⎠

, 
2

1 ( ) ( ) ( )i i iL G G H
x x z
∂ ∂ ∂ ∂⎛ ⎞ ⎛= η + η + η⎜ ⎟ ⎜

∂ ⎞
⎟∂ ∂η ∂η ∂ ∂η ∂⎝ ⎠ ⎝ ⎠

,  

2 2

2 2 2( ) ( )i iL G H
x z
∂ ∂

= η + η
∂ ∂

. 

  

 

Fig. 2. The homogenized Young’s modulus variation with respect to Poisson’s ratio of the auxetic material. 

The average of  over one period of the composite is calculated as C

1 ( )d
P

C C
P

η+

η

′ = η η∫  (10)
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From  (2), (9) and (10) we find 

0E E y′= + , 2(2 )(3 2 ) 1
(2 2 ) 2

aux aux

aux

E p
′ ′ ′μ + κ λ + μ + κ′ = +

′ ′λ + μ + κ
, 

2
2

0

2
( 1)

auxp
K
κ

=
′ −

, 
2

2 1 2 3
0

( )1
( 2 )(

aux aux aux

aux aux aux aux

C C CK + +′ = +
′ ′λ + μ + κ α +β + γ )

,   
(11)

where  and  are the average values given by (10) over one period of the composite, and  are the 
auxetic constants. The material constants used in this simulation are  

′λ ′μ auxC

50.01GPaλ = , 28.21GPaμ = , 0.32ν = , 

for aluminum, and  
6.3GPaλ = , 4.19GPaμ = , 0.0149GPaκ = , 

4 43.97 10 N, 14.2 10 N, 2.68 10 Nα = × β = × γ = ×

2 323.4 10 N/m, 19.55 10C C= − × = ×

4 4
1 13.56 10 N/mC = ×

4 4 N/m
, ,

, 

for the auxetics. For Poisson’s ratio of the auxetic material we consider the interval . 1 0− ≤ ν ≤
 

 Table 1. The Young’s moduli for auxetic and nonauxetic virtual systems. 

Young’s 
modulus [GPa] 

ν  θ  Young’s 
modulus [GPa] 

ν  θ  

10.33 
9.29 

 – 0.2 
 + 0.2 

0.22 104.66 
90.00 

– 0.4 
+ 0.4 

0.5 

11.98 
10.18 

– 0.2 
+ 0.2 

0.27 109.91 
98.91 

– 0.3 
+ 0.3 

0.83 

14.71 
12.79 

– 0.2 
+ 0.2 

0.3 118.05 
102.70 

– 0.3 
+ 0.3 

0.8 

40.03 
36.27 

– 0.3 
+ 0.3 

0.35 123.22 
107.33 

– 0.2 
+ 0.2 

0.65 

50.12 
45.22 

– 0.3 
+ 0.3 

0.38 130.56 
117.51 

– 0.2 
+ 0.2 

0.71 

80.65 
68.66 

– 0.4 
+ 0.4 

0.43 138.07 
124.27 

– 0.3 
+ 0.3 

0.75 

94.35 
80.19 

– 0.3 
+ 0.3 

0.91 139.44 
125.49 

– 0.4 
+ 0.4 

0.75 

 
Fig.2 represents the variation of the homogenized Young’s modulus with respect to the volume fraction 

 of aluminum and the Poisson’s ratio  of the auxetic material (θ ν 1 0− ≤ ν ≤ ). The Young’s moduli of 
aluminum and respectively, of the auxetic material are 109 GPa, and respectively, 1.55 GPa. We observe that 
the Young’s modulus is increasing with respect to θ  from 2 GPa, to about 140 GPa, and have a maximum 
value for θ = 0.75. For θ  above this value, the Young’s modulus is decreasing with respect to θ  from 135 
GPa, to about 90 GPa. As expected, the limits 0θ =  and 1θ = yield exactly to the Young’s moduli of the 
auxetic material and respectively, to aluminum.  

To see how the homogenized Young’s modulus is varying when the auxetic material is replaced to 
another material with a positive Poisson’s ratio ν ( 0 0.5≤ ν ≤ ), we calculate the modulus for the same 
absolute value of the Poisson’s ratio. The table 1 shows that the homogenized Young’s modulus decreases 
with 10-15% when the Poisson’s ratio is positive. Consequently, by transforming a nonauxetic material into 
an auxetic form as foams or cellular materials, an enhancement in the Young’ modulus of the composite is 
obtained.  

Finally, fig. 3 shows the phase speed versus scaled wave number for laminated composite plate 
(auxetic material has ). The fundamental mode and first harmonics are the main branches that 0.32ν = −
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retain finite wave velocity as the scale wave number tends to zero. The remaining harmonics come together 
in groups of three with another harmonic merging at a higher wave number. The behavior of the dispersive 
curves differ from that characterized a laminated material with positive Poisson’s ratio by very low phase 
speeds. 

 

 
Fig. 3. Dispersion curves for the laminated composite plate. 

4. CONCLUSIONS 

In this paper, the auxetic material is modeled with Cosserat elasticity which admits degrees of freedom 
not present in classical elasticity. The Young’modulus is computed via the Bécus homogeneous technique 
for a laminated 2D composite plate, made up of alternating the aluminum and auxetic layers. The results 
confirm that the auxetic system composed from two materials with different properties can achieve various 
enhancements in the Young’s modulus if one of the material has a negative Poisson’s ratio.  

The results are twofold: on the one hand, the paper provides a method to obtain the effective Young’s 
modulus for an auxetic composites. On the other hand, they provide a means of enhancement in the material 
properties for auxetic over nonauxetic materials, not only for Young’s modulus, but also for strength, 
damping, indentation resistance and shear modulus. Poisson's ratio are wider (−∞ < ν < ∞ ) in the case of 
anisotropic materials. When a structure is loaded in bending, the flexural rigidity can be increased by 
including a core of auxetic material between these two skins to produce a sandwich structure.  The key 
requirements for the core are normally the shear modulus and strength and compressive modulus.  Light-
weight, acoustic insulation and thermal insulation often result from the addition of the auxetic core.   

The stiffness of one the two constituents must be at least 25 times greater than that of the other 
constituent to obtain a Poisson's ratio less than zero. A Poisson's ratio approaching  requires constituents 
which differ even more in stiffnesses, so that one phase is very soft, tending to empty space in its properties. 
The bounds on Poisson's ratio are wider ( ). Another possibility is that of creating stiffer negative 
Poisson's ratio materials by design on the molecular scale. A crystalline form of silica (SiO2), -cristobalite, 
exhibits Poisson's ratios of 

1−

−∞ < ν < ∞
α

0.08+ to , depending on direction.  0.5−
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The negative Poisson’s ratio can often yields to a negative stiffness mechanism, which can be used to 
isolate or to cancel out vibrations in dynamical systems, better than traditional active control of vibrations 
solutions. The negative stiffness mechanism exerts an opposing force that cancels out the stiffness in a 
spring, for example (May [19], Lakes [20], [21], Lakes , Lee, T., Bersie, A., Wang [22]).   
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