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Gianfranco Cimmino presented for the first time his famous reflection algorithm in 1938. He proved 
that, if the rank of the problem matrix is greater than one then, for any initial approximation the 
sequence generated by his algorithm converges to a solution of the normal equation associated to a 
perturbed (diagonally scaled) least-squares problem. Started from this result we construct a first 
extension of Cimmino's method which generates sequences of approximations of least-squares 
solutions for general inconsistent problems. Using some results of H. Keller (1965) and D. Young 
(1972), we show that the set of limit points of this extension completely characterizes the set of least-
squares solutions. The second extension of Cimmino's algorithm is obtained by starting from a 
previous result of the author, concerning Jacobi's simultaneous projections algorithm. In this sense, 
we prove that a particular case of Cimmino's method can be considered as a particular case of Jacobi's 
method and that its limit points also completely characterize the least-squares solutions of the initial 
problem.  
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1. THE ORIGINAL CIMMINO’S ALGORITHM 

One year after S. Kaczmarz presented for the first time his famous successive projections algorithm in 
[6], G. Cimmino proposed in [3] his simultaneous reflections method. This uses instead of the orthogonal 
projections Pi on the hyperplanes generated by the system equations,  
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orthogonal reflections Si , given by 
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 (we denoted by ai, bi the i-th row of the  m × n system matrix A and the i-th component of the right hand side 
b ∈  Rm and by 〈⋅, ⋅〉 ,  || ⋅ || , the Euclidean scalar product and the associated norm on some space Rq). 
Cimmino's reflections Si are simultaneously applied to an approximation xk ∈ Rm  and, a convex combination 
of them defines the next one xk+1 by 
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In [3] Cimmino proved the following main convergence result concerning the algorithm (3)-(4).  
Theorem 1. Let A and b be such that 

2)( , ,,1   , 0 ≥=∀≠ Arankmiai … , (5)

and the system 

bAx = . (6)

is consistent. Then, if the weights ωi are as in (4), for any x0 ∈ Rn the sequence (xk)k ≥ 0 generated by (3) 
converges to a solution of (6). 

Remark 1. The fact that the limit points of Cimmino's sequence (xk)k ≥ 0 from (4) (with respect to the 
initial approximation x0) "cover" the set S(A; b) of all solutions of (6) will be proved in the next section. 

The "unpleasant" aspect of the above Cimmino's algorithm is that the sequence (xk)k ≥ 0 approximates 
a solution x only in the consistent case for (6). But unfortunately, "real world problems" usually give rise to 
inconsistent systems of the form (6), (see e.g. [5], [8], [9]), which must be reformulated as "linear least-
squares problems": find x ∈ Rn such that 

{ , nAx b min Az b z R− = − ∈ }  (7)

In this general case, Cimmino's algorithm or some of its extensions still converge, but to solutions of 
"weighted" formulations of (7) (see e.g. [1], [2]). This is why we decided to analyse in this paper some 
possibilities to "extend" or "adapt" Cimmino's original method (3)-(4) to the more general problem (7), such 
that the sequence of approximations generated in this way, still converges to one of its solutions (similar with 
the results obtained by one of the authors in [10], but with respect to Kaczmarz-like projections algorithms). 
Moreover, we were also interested in the possibility of characterizing with these limit points, the set of all 
solutions of (7), denoted by LSS(A;b) (see also [11] and  Remark 1 before). These versions of Cimmino's 
algorithm will be described in the next two sections of the paper. 

2. THE FIRST EXTENSION 

For the construction of our first version of the algorithm (3), we started from a remark of G. Cimmino, 
made in the original paper [3]. This result (based on some steps from the proof of Theorem 1) can be briefly 
described as follows. 

Corollary 1. If he system (6) is not consistent and A verifies (5), for any x0 ∈ Rn, the sequence (xk)k ≥ 0 
generated by (3) converges to a solution x of the normal equation 

( ) ( )t t
A A x A bΩ Ω Ω= Ω , (8)

where 

( )1 2, , , m
m RΩ = ω ω ω ∈… , (9)

bDbADA AA
ΩΩΩΩ ==   ;  (10)

and DA
Ω is the diagonal m × m matrix given by 

1

1

( , , m
A

m

D diag
a a

Ω )
ωω

= …  (11)



3 On Cimmino’s reflection algorithm  

Remark 1. If the system (6) is consistent, the above Corollary 1 does not contradict the result in 
Theorem 1. Indeed, in this case and because DA

Ω is invertible (ωi > 0), the (consistent) system (6) is 
equivalent with the (consistent) system 

A AD Ax D bΩ Ω= , (12)

which is equivalent with the normal equation (8). Starting from the above Corollary 1, we obtain the 
following version of Cimmino's algorithm (3) convergent to solutions of the general least-squares 
formulation (7). 

Proposition 1.  Let A be as in (5), x0 ∈ Rn an arbitrary initial approximation and the weights ωi from 
(4) given by 

miaii ,,12 …==  , ω . (13)

Then, the sequence (xk)k ≥ 0 generated by (3)-(4) converges to an element from LSS(A;b). 
Proof For ωi as in (13) the matrix DA

Ω from (11) is the identity, thus the normal equation (8) is 
identical with 

bAAxA tt = , (14)

i.e. the normal equation associated to the problem (7). Then Corollary 1 applies and the proof is complete. 
In the rest of this section we shall prove that the set of all limit points of the algorithm (3)-(4) with the 
weights choice (13) (which we shall denote by LPC(A;b)) coincides with LSS(A;b). For this we shall briefly 
replay some constructions and results form papers [7] and [12]. Let B and N be  n × n real matrices (with N 
invertible) and d ∈ Rn such that the system 

dBx =  (15)

is consistent. For approximating its solutions, we consider the iterative process: x0 ∈ Rn , 
1 1 ,  0k kx Tx N d k+ −= + ≥ , (16)

with 
1T I N B−= − . (17)

The following result is proved in [7]. 
Theorem 2.  Let us suppose that the matrix B is symmetric and nonnegative definite and consider the 

following splitting of it 

B D M= +  (18)

with D symmetric and invertible. Let E be another  invertible n × n matrix and PE defined by 
1 1( ) ( )t

EP E D E D− −= + − B . (19)

Let also N be given by 
1

EN N E D−= = . (20)

Then, for any x0 ∈ Rn the method (16)-(17) is convergent to an element from S(B;d) if and only if the matrix 
PE  is positive definite. 
Let now L(N;d) be the set of all limit points of the iteration (16)-(17) (with respect to x0 ∈ Rn). In the paper 
[12], the following result is proved.  

Proposition 2.  If the method (16)-(17) is convergent, then the following equality holds 

( ; ) ( ; )L N d S B d= . (21)

We are now able to prove the previously announced result.  
Proposition 3.  In the hypothesis of Proposition 1 the following equality holds   
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( ; ) ( ; )LPC A b LSS A b= . (22)

Proof.  Let the n × n matrix B and d∈ Rn be defined by 

,  t tB A A d A b= = . (23)

We then have (see e.g. [1]) 

( ; ) ( ; )LSS A b S B d=  (24)

Moreover, Cimmino's algorithm (3)-(4), with ωi given by (13) becomes an algorithm from the class 
(16)-(17) if we define the matrices D and E, in the above Theorem 2 by 

1,  D I E I= =
ω

, (25)

with ω given by 

2

1

1
2

m

i
i

a
=

ω = ∑  (26)

Then (see (20)) 

N I= ω  (27)

and the above Proposition 2, (24) and (27) tell us that 

( ; ) ( ; ) ( ; )LPC A b L N d LSS A b= =  (28)

if and only if the symmetric matrix P=PE, associated to the above Cimmino's algorithm and given by 

2EP I B= ω −  (29)

is positive definite or equivalently 

( )
2
Bρ

ω > . (30)

But, because B is symmetric and nonnegative definite and 
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for ω from (26) we always have 

( )
2
Bρ

ω≥ . (32)

If we would have equality in (32) then, from the properties of the matrix B and (31) it would result that B 
would have only one nonzero eigenvalue, with (algebraic) multiplicity equal to 1. Then, rank(A)=1 which 
would contradict (5). Then (30) holds and the proof is complete. 

3. THE SECOND EXTENSION 

We shall start the presentation of this section by observing that the classical Cimmino’s algorithm (3) 
coincides, in the particular case 

0,  1, ,i i mω = γ > ∀ = …  (32)

with Jacobi's simultaneous projections method (see [4], [10]) 
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Indeed, from (3)-(4) and (27) it results that 
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which coincides with (28) for 

0
2
m

Ω =Ω = . (35)

The convergence condition for (28) (see again [4], [10]) is 

20
( )E

< Ω <
ρ

, (36)

with 
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Proposition 4.  If the assumptions (5) hold for A, then he number Ω0 from (35) satisfies (36). 
Proof.  Because of the symmetry of E, we successively get 

2 2
1 1

1 1( )
m m

t t
i i i i

i ii i

E E a a a a
a a= =

mρ = ≤ = =∑ ∑ , 

which together with (35) gives us 

0
2
( )E

Ω ≤
ρ

. (38)

If the equality would hold in (38), we would have (see (35)) 

( )E mρ = . (39)

But, because the matrix E from (37) is nonnegative definite and symmetric, we know that  
σ(E) ⊂ [ 0, ∝), which means ρ(E) ∈ σ(E). Let x ∈ Rn  \{0} be a corresponding eigenvector. We then 
successively obtain 

2 2 2
2 2

2 2
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,
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x a x a
m x Ex x m x

a a= =

= = ≤ =∑ ∑ . (40)

From (40) and the Cauchy-Schwarz inequality 
2 2 2, ,  1i i , ,x a x a i≤ ∀ = … m , (41)

we obtain the equalities in (41), which means that x is collinear with ai, ∀ i=1,…, m. But, this would mean 
that 

( ) 1rank A ≤ , (42)

which would contradict (5). Thus, strict inequality holds in (38) and the proof is complete. 
Let now ϕj, Φ(α; ⋅) be defined by (see [10]) 
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Φ α = −α ϕ ∈∑ , (44)

where αj ≠ 0 is the j-th column of A and α ∈ R, α ≠ 0. Let D be the n × n the matrix defined by 
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=
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=
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∑ . (45)

We then consider the following Cimmino Extended (CE, for short) algorithm. 

ALGORITHM CE. 
Let y0 = b, x0 ∈ Rn and xk an already computed approximation. The next one, xk+1 is given by 

1 ( ; )k ky y+ = Φ α , (46)

1 1k kb b y+ += − , (47)
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where by bi 
k+1 we denoted the i-th component of the vector bk+1 from (47). Then, the following result holds 

(as in Theorem 6.7 from [10]). 
Theorem 3.  For any matrix A satisfying (5) and αj ≠ 0, j=1,…, n, any vector b ∈ Rm, any initial 

approximation x0 ∈ Rn and any α such that  

20,
( )D

⎛ ⎞
α∈⎜ ⎟ρ⎝ ⎠

 

the sequence (xk)k ≥ 0 generated with the algorithm (46)-(48) converges to an element x ∈ LSS(A;b). 
Conversely, any element x ∈ LSS(A;b) can be obtained as the limit point of such a sequence, for an 
appropriate choice of x0. Moreover, for x0 in the range of At, the sequence (xk)k ≥ 0 converges to the minimal 
norm solution of the problem (7). 
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