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Due to the complexity of the magnetic nanoparticles systems, their study by simulation, requires more 
and more performant algorithms. This work represents an implementation of an advanced Monte 
Carlo algorithm, MCAMC (Monte Carlo with Absorbing Markov Chains) for the study of the 
magnetic relaxation processes in nanoparticles systems. The achieved results with stochastic model, 
based on MCAMC algorithm, are compared with the achieved results with Néel – Brown model for a 
diluted system of magnetic spherical nanoparticles, which is completed with a random distribution of 
dimensions, and a distribution of the effective anisotropy constants. 
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1. INTRODUCTION 

In nanomagnetism, the modeling and the simulation represent very important instruments, which are of 
help in exploiting very interesting phenomena in magnetic media that are interesting for technological 
applications [1], [2], [3]. As a strategy, it is necessary to realize simulation models as realistic as possible, 
using quicker and quicker algorithms for their implementation. 

As dynamic Monte Carlo methods used till now for Ising physical models (with two metastable states), 
we note: the Glauber method [4] for a one-dimensional Ising chain dynamic or the Metropolis method [5]. 
Both methods offer us a correct statistic for Ising phenomenological model [6], [7], but it is necessary a long 
time if the state change probability is a small one. There were developed a lot of dynamic Monte Carlo 
performance algorithms [7], which can be very easy implemented in modeling of complex systems. 

2. MAGNETIC RELAXATION IN NANOPARTICLES SYSTEMS AFTER NÉEL – BROWN 
MODEL 

We consider a single domain spherical particles system with a lognormal distribution for anisotropy 
constants and diameters. The particles have a rigid catching, and do not interact. The particles are considered 
to exhibit uniaxial anisotropy. 

For thermodynamics equilibrium in a zero magnetic field  ( H = 0 ), the magnetization medium of a 
particle is entirely zero ( M = 0 ) due to the orientation of the easy magnetization axis, and, in the same time, 
due to the spontaneous magnetization of the particles, which are distributed with equal probability in all 
directions. 

By applying a magnetic field, the spontaneously magnetized particles shift near the field direction, and 
become magnetized. Based on the model Néel-Brown [8], [9], where the magnetic field becomes zero, the 
whole remanent magnetization does not vanish, but suffers a gradual diminishing following an exponential 
law: 
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where, M(0) is the remanence at t=0, i.e., in the moment of the field disconnection, the field which produced 
the saturation, Mrem(t) is the remanence after the time interval t, and τ is the relaxation time (the time after 
which the system returns to the thermodynamic equilibrum). We define the reduced remanent magnetization 
at the moment t as the ratio between the remanence at the moment t and the remanence at the moment t = 0 
(the moment of the disconnection of the external magnetic field) [8]:  
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An estimation of the relaxation time is given by Néel and Brown [9], [10]:  

σ⋅τ=τ exp0  (3)

with   
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where K is the effective constant of particle anisotropy, kB the constant of Boltzmann, and V is the  volume 
of particles. τo was calculated by Stepanov and   Shliomis [11]:   
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where 
K

M s
a αγ
=τ

2
 is the relaxing time of the precession movement into the anisotropy field, Ms is the 

spontaneous magnetization, α is the relaxing adimensional constant and γ giromagnetic ratio. 

3. STOCHASTIC MODELLING OF MAGNETIC RELAXATION PROCESS WITH A  MCAMC 
ALGORITHM 

In the following will be presented the essential of the algorithm MCAMC. One considers an absorbing 
Markov chain with s transient states and r absorbing states [7]. The system starts in one of the s transient 
states, and remains in the transient subspace of the s transient states until it is absorbed into one of the r 
absorbing states.  One calculates the life of the system in the transient subspace. 

One takes a monodomain spherical nanoparticle system with a lognormal distribution for diameters and 
for anisotropy constants, which does not interact, and have a rigid attachment into a solid matrix, under an 
external magnetization field. Let the nanoparticles have uniaxial anisotropy. We also consider an Ising 
system, with two  metastable states (state 1- the magnetic moments of parallel nanoparticles with the 
magnetization field direction and state 2 - the magnetic moments at an angle of 180° as compared to the 
magnetization field direction). At the initial moment, we cancel the magnetization field and simulate 
dynamically the system. 

For simulating the evolution of Mr, reduced remanent  magnetization, with the time, we used the 
MCAMC method [ ] , where for transient subspace has only one state (the current state of system 
configuration). 

[ ]7,6

By considering one nanoparticle of the system, primary, it is in state 1, then passes to state 2 (absorbing 
state), by one  intermediate state - the current state. This i nanoparticle, has the  Ei energy in each of these 
states. The transition probability is : 
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where: k=1 for state 1, k=2 for state 2. is the energy barrier for metastable states 1 and 2. bikE
The algorithm steps are : 

1. The initializing for reduced magnetizing for  Mr = 1 system, the parallel magnetic  
     moments with  external magnetic field direction which cancel out. 

2. The  E i  nanoparticles of current energies; 
3. Setting the t time at 0; 
4. One repeates the next steps until  Mr =0; 

a. Incrementing the Monte Carlo time t=t+1. 
b. Generating a random number, 1r , having an uniform distribution in (0,1) interval, which is 

used for random selection of i nanoparticle from the system i =1+[ Nri ] where [ ]x is the 
complete part of x. 

c. Generating two random numbers, 2r  and  3r  for selected i nanoparticle. 

d. If i nanoparticle is not in state 1 and  ,
2
1

2 ≤r  the i nanoparticle can pass in state 1, otherwise 

it passes in state 2 
e. The transition probabilities calculation for i nanoparticle (p 1i - transition in state 1, p 2i - 

transition in state 2), according to the relation (6). 
f. If  ≤2r 1/2 and  ,13 ipr ≤ the i nanoparticle passes in state 1,l with the reduced magnetization  

rr M +M =
N
1

 . 

g. If  2/1〉r  and  23 ipr ≤  , the i nanoparticle  passes in state 2, on making topical the reduced 

magnetization  
N
1MM rr −   and the nanoparticle energy; =

h. If we have not any of these two sets of conditions, the i nanoparticle has no  
                   transition on. 

 
A Monte Carlo step is connected by a possible random transition of a nanoparticle, of the system, in 

one Monte Carlo unity. As a real time, the period of time associated to a Monte Carlo step, can be connected 
to a real time unity in the Langevin  dynamic sense  [ ]12 , t(MCS)=  .10 12 s−

In Fig. 1 it is represented the time dependence of reduced remanent magnetization, after the law (2)- 
continuous line, simulated with MCAMC algorithm -  with * for a 1000 magnetite spherical nanoparticle 
system with  spontaneous magnetization with a lognormal distribution of diameters 
(the average diameter is 10 nm), and, for effective anisotropy constants, at 300 K . 

mAM s /107.4 5⋅=

A good agremeent can be seen in Fig. 1. 
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Fig. 1 The reduced remanent magnetizing depending on a Néel-Brown law (continuous line) and simulated with MCAMC algorithm 
(with *) for magnetic nanoparticles system ( with an average diameter of 10 nm) with a lognormal distribution of diameters of 

anisotropy constants at 300 K. 

4. CONCLUSIONS 

The work represents an implementation of an advanced Monte Carlo algorithm (MCAMC) in real time 
with only one transient state in the study of the magnetic relaxation processes in nanoparticle 
superparamagnetic systems. 

The results obtained by simulation are in good agremeent with the results obtained by Néel – Brown 
model. This algorithm can be used, with minor modifications (adding classes of microparticles to transient 
states) for studying the dynamics of the nanoparticle system with dipolar interactions at low temperatures. 
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