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The problem of a system of rigid bodies subjected to holonomous, bilateral frictionless constraints 
and punctual contacts with dry friction between some bodies of the system is analysed in this paper. 
The Jean and Pratt problem of a 2D system of bodies is solved by using the linear equivalence 
method (LEM).     
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1. INTRODUCTION 

Many publications deal with analysis of the mechanical system of rigid bodies with dry friction 
between some bodies of the system. For example, in [1] the dynamics of mechanical systems with dry 
friction elements modeled by set-valued force laws are described by differential inclusions. An equilibrium 
set of such a differential inclusion corresponds to a stationary mode for which the friction elements are 
sticking. Popa and coworkers [2] analyze the motion of multibody hybrid systems characterized by switching 
between constraints, which are defined as different dynamical regimes. Jean and Pratt [3] and Moreau [4], [5] 
have developed the general motion equations for a system of rigid bodies submitted to usual constraints and 
forces, and to punctual contacts with dry friction between some bodies of the system. In this paper the 
nonlinear equation of the Jean and Pratt problem is solved by using linear equaivalence method (LEM). The 
LEM was introduced by Toma in studying both qualitatively and quantitatively the nonlinear dynamical 
systems and their solutions (Toma [6]-[8]). LEM and its applications are extensively presented by Toma in a 
monograph (Toma [9]).  

2. EQUATIONS OF MOTION 

Consider a system composed by a finite set of rigid bodies of generalized coordinates . The 
initial conditions are given       

nq∈\

0 0( )q t q= , 0 0( )q t v=� , , 0 0, nq v ∈\ 0t ∈\ , (2.1) 

with , , a very small number. In the spirit of the Jean and Pratt [3], we say that 
the motion is defined on the time interval 

0|| ||q q− ≤ ε 0|| ||v v− ≤ 0ε >ε

0 0[ , ]t t t T∈ + , 00 T T< ≤ , 0 0,t T ∈\ , where T must be find. The 
contact points are denoted by jP , 1,2,...,j m= . The unknowns of the problem are T , the mapping , 

, , , which describes the motion of the system, the mapping 
, , , 

( )t q t→

0 0[ , ]t t t T∈ + 00 T T< ≤ 0 0,t T ∈\
( ( ))t f q t→ ∈S 1 ... mS S S= × × 2

jS =\ 0 0[ , ]t t t T∈ + , 00 T T< ≤ , 0 0,t T ∈\  which describes the pair 

( ( ))jf q t  of the components of the tangential reaction force at a contact point jP  characterized by dry 
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friction, and the mapping , ( ( )) mt N q t→ ∈\ 0 0[ , ]t t t T∈ + , 00 T T< ≤ ,  which describes 
components of the normal reaction force. We say that (2.1) is a non-critical initial condition, if there 
exist strictly positive real numbers , 

0 0,t T ∈\
( ( ))jN q t

1 2,r r 10 r r2< ≤ , such that , ,t q q∀ � , 1,2,...,i m∀ = , , 
where 

1 2( , , )ir M t q q r≤ ≤�
( , , )iM t q q�  represent the normal components of the reaction when there is perfect slip.  

By definition ( , ( ), ( ))M t q t q t�  is the mapping ( . Certainly, , , ) ( , , ) mt q q M t q q→ ∈� � \ iM  is strictly 
positive and bounded in a neighbourhood of and .  In the neighbourhood of a non-critical initial 
condition, unilateral constraints are maintained when there is perfect slip, and .  

0 0,t q 0v

0 0 0( , , ) 0M t q v >
If (2.1) is a non-critical initial condition, the usual frictionless holonomous, bilateral constraints is 

satisfied if there exists 0  such that 1k< <

 , 1 2/(1 ) 0k k r r− − + > /LdR k m≤ , (2.2)

where dR  is an upper bound of the friction coefficients. The kinetic and potential energies of the system are 
given by 

1/ 2 ( ) ( , ( )) ( )T q t A t q t q t= � � 1/ 2 ( ) ( , ( )) ( )t B t q t q t, V q= , (2.3)

where ( , ( ))A t q t  is the mapping  representing the matrix of kinetic energy,  is 
the Hilbert space of the 2-power integrable functions, and 

( , ) ( , ) ( , )n nt q A t q L→ ∈ \ \ L
( , ( ))B t q t  is the mapping 

 representing the matrix of potential energy. The Lagrangian has the form 
, and the general form of the Lagrange equations of the system subject to holonomic frictionless 

constraints depending or not the time, can be written as 

( , ) ( , ) ( , )n nt q B t q L→ ∈ \ \
L T V= −

( , ( )) ( ) ( , ( )) ( ( )) ( , ( ))A t q t q t R t q t f q t F t q t= +�� , 

where ( , ( ))R t q t  is the mapping , and ( , ) ( , ) ( , )nt q R t q L S→ ∈ \ ( , ( )) ( )R t q t f t  are the generalized forces 
representing the reaction force, and ( , ( ))F t q t  is the mapping . ( , ) ( , ) nt q F t q→ ∈\

The components of the sliding velocities are given by , with 

the mapping . The components of the normal reaction forces are 

expressed as 

( ) ( , ( )) ( ) ( , ( ))U t R t q t q t U t q t= + ��

( , ( ))U t q t� ( , ) ( , )t q U t q S→ ∈� ( )jN t

( ) ( , ( )) ( ( )) ( , ( ), ( ))N t L t q t f q t M t q t q t= +� � , where  is the mapping 
. We add the condition of a unilateral constraint to be maintained at the contact 

points 

( , ( ))L t q t�

( , ) ( , ) ( , )mt q L t q L S→ ∈� \

jP , 1,2,...,j m= , with dry friction between some bodies of the system , where ( )N t ∈Γ Γ  is the 

interior of the positive cone of , i.e. .   m\ { , 1,2,..., , 0}m
in i m nΓ = ∈ ∀ = >\

The formulation of the friction law Coulomb’s law is 

      ( ) ( ( ), ( ), ( ))f q q t N t U t− ∈∂φ , (2.4) 

where  is the subdifferential with respect to  of the mapping ∂φ w ( , , , ), , ( , , , )t q n w n w S t q n w∈Γ ∈ → φ ∈� \  
convex with respective to  .  w�

As an example, let us consider the Jean and Pratt problem [3]. The mass  moves with respect to mass m
M along the line C of slope , of the mass tanα M  with frictionless bilateral constraints. The mass m  also is 
sliding on the horizontal line B of a fixed body. Friction at the point of contact  is obeying Coulomb’s law. 
The mass m  is subjected to a horizontal constant force with magnitude 

P
tanMg− α . The mass M  moves 

vertical along the vertical line A with a frictionless bilateral constraint (fig.2.1). The generalized coordinate 
 is the abscissa of . We denote with ( )q t P ( ( ))f q t  the horizontal component of the reaction force. The 

motion equation (2.3) becomes 

      ( ) ( ( ))Aq t f q t=�� , 2tanA m M= + α , (2.5) 
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subjected to initial condition (2.1). The sliding velocity and the normal component of an unilateral 
constraint of the reaction force from the line B upon the mass  are 

( )U t
( ( ))N q t m

      ( ) ( )U t q t= � , , . ( ) tan ( )N t M q t Mg mg= − α + +�� ( ) 0N t >

 
Fig. 2.1. The Jean and Pratt system. 

 
We suppose that the Coulomb’s law, can be written in the virtue of (2.4), as 

 ( ) [ ( ), ( )]f q RN t RN t∈ − , 1( ) ( ) 0f f U t ≥ 1 [ ( ), ( )], − f RN t RN t∀ ∈ − ,  (2.6) 

where R  is the friction coefficient, and 

( ) ( )2
0 0,

/ / const.
q

f N f N+ = , 0
( )

tan
Ag m MN

A RM
+

=
α∓

. (2.7) 

The  refers to the initial data  and respectively, . We have ∓ 0 0v > 0 0v <

( , ( ), ( ))M t q t q t Mg mg= +� and . Consequently, any initial condition (2.1) is non-critical. 

The condition (2.2) becomes 

( , ) tan /L t q M A= α�

tan 1RM
A

α
< . This condition is verified for , and may be or not for 

. By using the notation 

0 0v >

0 0v < 0/( ) tanhf RN Bq= , 0 /B RN A= , the conditions (2.6) and (2.7) are 
automatically verified for , and the motion equation (2.5) becomes const 1=

( ) tanh( ( ))q t B Bq t=�� , 0 /B RN A= . (2.8)

3. SOLUTIONS 

Solutions of (2.8) and initial conditions (2.1) are determined by using the linear equivalence method 
developed by Toma. To understand the method, let us consider the system of ordinary differential equations 

( ) ( ) ( ) ( )( ) [ ]1

1,
, , , , , C I , I ,

n

j j n
y f t y f t y f t y y a b

=
⎡ ⎤= ≡ ∈ =⎣ ⎦� \⊆

)

,         (3.1) 

where ( ,jf t y  are analytic functions with respect to , uniformly on I y

( ) ( ) { }( )
1

, , 1,..., , 0
n

j jf t y f t y j n
∞

μ
μ

μ =

= = μ∈∑ `∪ ,         

and their coefficients  are at least of class : Ijf μ →\ ( )IC0 . Even if the equations are not homogeneous, we 
shall reduce it to homogeneous equations of the form (3.1). The system (3.1) may be also written as 

( ), 0y f t y− =� ,  (3.2)
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LEM considers an exponential mapping depending on n parameters  ( )1 2, , , n
n= ξ ξ ξ ∈ξ … \   

( ), exp ,v x yξ ≡ ξ , (3.3)

that associates to initial equations, two linear equivalent equations: (i) a linear partial differential equation of 
first order with respect to x 

( ) ( ), , ,Lv x v f x D vξ ≡ − ξ =� 0 , (3.4)

and (ii) a linear first order differential equation 

( ) ( )
1,

1 1

,
j

j

mn
j

γ j j e j i i n
j

v f t v eμ γ+μ− =
= μ =

= γ = δ∑ ∑� . (3.5)

The equation (3.4) was obtained by differentiating (3.3) with respect to t and replacing the derivatives 
 from the nonlinear system. The usual notation jy� ( )ξD,tf j  stands for the formal operator 

( ) ( )
μ

μ∞

=μ
μξ ∂

∂
= ∑ ξ1

D, tftf jj . 

The formal scalar product in (3.4) is expressed as 

( ) ( )
1

, , ,
n

j j
j

f t D f t Dξ
=

ξ ≡ ξ∑ . 

The second equation (3.5) is obtained from the first one, by searching the unknown function v in the 
class of analytic in ξ functions 

( ) ( )
γ!

1,
γ

1

ξξ ∑
∞

=γ
γ+= tvtv . 

Consider now for (3.1), the initial conditions 

( )0 0 0, Iy t y t= ∈ , (3.6) 

which can be written by applying ( )0 0, exp , , nv t y= ∈ξ ξ ξ \ , as ( )0 0 ,v t yγ
γ = γ ∈` . 

In order to get back to the solutions of the initial nonlinear Cauchy problem, the partial differential 
equation (3.5) can be defined on some space of analytic with respect to ξ functions, uniformly for I∈t . 
Now, let us return to the Jean and Pratt problem. The nonlinear equation (2.8)  

tanhq B Bq=�� ,  (3.7)

must be solved under conditions 

0( ) 0q t = , 0 0( )q t v=� . (3.8)

The problem (3.7) is similar to Troesch’s plasma problem of the confinement of plasma by radiation 
pressure (Toma [10]), with the difference that the governing equation in the Troesch’s problem is 

. Using the same technique as the Troesch’s problem solving, we introduce changes of function 
and variable 

, tanhxxy = y
, ( )x Bt y x Bq= = , and the equation (3.7) and (3.8) become 

, tanhxxy y= , ( ) ( ), 00 0, 0xy y z= = . (3.9) 

Writing (3.9) in the form of a first order differential equations  

, ,, tanhx xy z z= = y , (3.10) 
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and applying the LEM exponential mapping  

( ), , exp( )v x y zσ ξ = σ + ξ , (3.11)

the first LEM equivalent equation is obtained 

 ( ), , tanhxv v Dξ σ= σ + ξ v , (3.12)

where  

( ) ( )
2 2

2

1

2 (2 1)tanh ,
2 !

k k k
k kk

k
k

B vD D v
k

∞

σ σ
=

− Dσ
∂

≡ ≡
∂σ∑ , (3.13)

with 2kB  the Bernoulli numbers (Abramovitch and Stegun [11]). The initial conditions (3.9) become 

( ) ( ) 00 0, 0y z z= = . (3.14)

By considering for v  the expansion in the form 

( ) ( )∑
∞

=+

ξσ
+=ξσ

1 !!
1,,

kj

kj

jk kj
xvxv , (3.15)

equation (3.12) leads to the second LEM equivalent equations 

( )
2 2

2 2
1, 2 1 ,

1

2 (2 1)
1 !

m m
m

jk j k m k k
m

Bv jv k v
m

−∞
−

− −
=

−′ = +
−∑ − . (3.16) 

This linear infinite system may be written in matrix form  

( ) ( )( ), 2 1 2 1 2 1
, ,x m m jkm j k m

v x− −∈ + = −
= = =V AV V V V` , (3.17) 

where the matrix  has the form A

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

…………
…
…
…

55

3533

151311

A00
AA0
AAA

A , (3.18) 

with the square diagonal cells . The initial conditions (3.14) become for V 2 1,2 1m m− −A

( ) ( )( )0 2 1 00, 0,j j
z z− ∈

=V V
`

. (3.19)

To solve (3.17) and (3.19), we truncate the system, by introducing the projectors , such as mP
( ) ( ) ( )2 1 1,...,

,m m
m j j m

P − =
= =V V V V . Therefore, the finite truncated systems may be written in the form 

( )
( ) ( )mm

m

x
VAV

=
d

d ,  being truncated matrices, up to order m inclusive. The initial conditions for ( )mA ( )mV  

are ( ) ( ) ( )( )0 2 1 0 1,...,
0, 0,m

j j m
z z− =

=V V . After elementary algebra, we obtain for (3.9) the approximating 

solution  

( ) 2 3 4
0 2 3

0 0 0

1 4 3 32 ...
2 5 5 75

y x z x x x x x
z z z

≅ − + − + 5 . (3.20)
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4. CONCLUSIONS 

For  and α fixed, if the initial conditions are ,m R 0 0( )q t q= , 0 0( )q t v=� , , the single solution of 
the problem is given by (3.20) 

0 0v >

( )
2 3 4

2 3 4 5
0 2 3

0 0 0

4 3 32 ...
2 5 5 75
B B B Bq t v t t t t t

v v v
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

≅ − + − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

, 0
2tan

RNB
m M

= , (4.1)
+ α

for ,0[0, ]t∈ τ
2

0 0
0

0

( tanv v m M
B RN

+ α
τ = =

)
 and 

2

0 2

( )( tan
tan tan

g m M m MN
m M RM

)+ + α
=

+ α − α
. For  we have 0t = τ

2
00.42 vq

B
= . 

If 0t τ> , , , ,0 0v = ( ) 0q t = ( ) 0f t = ( ) 0N t = . For ,tanR > α 2

tan 1
tan

RM
m M

α
→

+ α
, and . It 

results from here that in the limit process the shocks may occur, as suggested in [3]. The solution (4.1) exists 
only if the condition (2.2) is satisfied.  Indeed, for  this condition is satisfied because 

0N →∞ 0 0τ →

0 0v > f is negative, 

N  is positive, and f RN= −  which implies 2

tan 1
tan

RM
m M

α
<

+ α
. If , it results 0 0v <

2

0 2

( )( tan
tan tan

g m M m MN
m M RM

+ +
=

+ α +
)α
α

, and (2.2) may be satisfied or not. The single solution of the problem in this 

case is 

( )
2 3 4

2 3 4
0 2 3

0 0 0

4 3 32 ...
2 5 5 75
B B B Bq t v t t t t t

v v v
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

≅ + + − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

5 ,  (4.2)

for .  For , it follows ,0[0, ]t∈ τ 0t > τ ( ) 0q t = ( ) 0f t =  and ( )N t mg Mg= + . 
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