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In this paper, a model of multiple linear regression for fuzzy sets is given. Two cases are considered:
first, for fuzzy numbers in a general form, second, for triangular numbers. Next, we give a numerical
application of the proposed method.
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1. INTRODUCTION

The regression is one of the most useful methods for processing fuzzy data. There are many studies in
this area. For example, Diamond in [3] has applied the least squares method for triangular fuzzy numbers.
On the other hand, Puri and Ralescu [12], Wu and Ma [15], Ma Ming et al [9] have established an
isomorphically and isometrically correspondence between a fuzzy space and a certain Banach space. On this
foundation they have introduced a new norm in fuzzy spaces. Ma Ming et al have proposed a model of
simple linear regression on fuzzy sets.

This paper proposes an extension of the above-mentioned works at the multiple linear regression,
which has a wider applicability in many areas. At the beginning, the second section, gives the definitions
regarding fuzzy numbers and the distance on the fuzzy numbers set. Next, the general method of Multiple
Linear Regression (MLR) for fuzzy data is presented in section 3. The most used case of fuzzy numbers in
the triangular form is considered in the fourth section and an illustrative numerical example is shown in
section 5.

2. PRELIMINARIES

Let us assume a fuzzy number space denoted by F , [15]. For w e F and r € [O, 1] is considered the
{t/wlt) = rhre(0,1]
t/w(t)>0}, r=0"

upper bounds two functions, v_v(r) and v_v(r), with some special properties, [4]. F has embedded

closed interval defined by [w]” = { [w]r is a closed interval which has as lower and

isomorphically and isometrically, [15] in a certain Banach space. The distance between the fuzzy numbers

u = (y(r), ;(r)) and v = (y(r), ;(r)) is given by:

1 2

D, (u, v) = j. (g(r) - y(r))2 dr + I (u(r) - v(r))2 dr 2.1

0
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3. THE GENERAL MODEL
The regression function depends by p independent fuzzy variables X, X,,..., X, € F:
g=gX, X, X,)= by +b X, +. 4+ b X, 3.1)
For an observed variable Y, € F' we obtain the estimation:
Y, = by + b Xy 4. +b,X,,i =Ln (3.2)

Our task is to find the real parameters b, b...., b}7 that minimize the sum:

S(bys byrsb, ) = anpg(bo b Xy + .t b X, Y) (3.3)
i=1

From relations (2.1) and (3.3) one can conclude that the explicit form of S(bo,bl,..., bp) depends on the
signs of parameters by, b,...,b, : totally 27 possibilities. Here is considered the most general case: the set
B=1{b,eR/j= E} contains [/ positive elements and p —/ negative elements. Let
{1,2,...,p} = {kl,kz,...,kp} such that B = {bl,bz,...,bp}z {bkl,...,bkp} where bkj >0,j=1,/ and
bkj < 0,7 =1+1, p.Thus, we search the minimum for:

Sy, byoeens0, ) = S(Bgs by seens by, by s, ) = Zpg(bo + by Xy + ot bkpX,.kp,Yi):

i=1

=

1
l:_[ (bO + blq Kikl ot bk1 Kikz + bk1+1Xikl+l ot bkpXikp B Zi)Zdr:| * (3.4)
0

i=1
n 1 _ _ _
+ D‘ (bo +b Xy + o+ b Xy +by Xy bk},Xikp - )’i)zdr}
0

i=1

Next, is solved the following system of p + 1 equations:

s,
ob,
oS ' (3.9)
=0,j=1Ln
abkj

which is equivalent with:
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A 1
2nb, + iocjbj = Z{J‘(Zl + f)dr}
i=1] ¢

J=1

. ,, . 1
by + 2 vby + Biby + D Syby = [j X, Y, + Xlk[Y)d}
0

j=ll j=l+ o (3.6)
o1y + ZSIH,J‘bk, + Braby,, + ZY1+1,jbk, = ZU (XikHlZi + KikMYi)d’”]
j=1 ' j=l+2 i=1| 0
! p-1 n 1
by + D 8, + 2 b +Bb = I (X Y+ Xy Y}J
j=1 j=l+1 0
In (3.6), for s,¢ = G are used the substitutions:
n 1 _ n 1
Z{J'(Kiks+Xik ) ”:l—o‘ 2[_[(_zk +Xik52 ’”]ZBS,
=0 0
3.7
n 1 n 1
D' (XikSXik, + Xiks Kikt ’"} =V ’2{[ (Xiks Xik, + KikSXikt ”} =39,
i=1| o i=1] 0
Obviously y,, = v,,,9,, = 9, and the matrix of system (3.6) is symmetrical:
2n  q o, Oy a,
a; B Yi o O 61p
A=l o vy « B 8 8[p (3.9)
L978] 81+1,1 Sy B - Yis1,p
(x‘p 6171 81)[ ’Yp,1+l Bp
Remark:
. 2n a&‘ Bl‘ ’YVS‘ Br 6
The determinants of the type A, = N, A= L, A= | for r,s = =1,p p are strictly
aS BS ’YSV BS 63}" B
positive.
Proof:
n 1
2n j X, + X )d
2n (X’s i=1]0
Als o. B n 1 1 —‘ -
{[ Lk + th }Z ] J.(71k + Xl%?v )7’]"
i=1| o J
w1 a1 N’
= 2n Z[j @fks + X2 )dr:l - j X, + X,
i=1| o i=1 Lo |
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From Cauchy-Buniakowsky-Schwarz relation is obtained:

e TR
[I [ Zn\/ZL”‘ o )J ] 2[ ] -3 (I(x +)7,-ks)drﬂ ~ A, 20

i=l

>

[Z (Lks + X,

S — —

i=l1

rs
n

i=1

n

Zn: U (sz + X5 )TZ’]

i=1| o

[j. (Kik, Xy, + X i, X ik, ):l
0

+ X,

Uu Ko+
[ij + X2

o) o]

X,

}
e

2
ik +X1k Xlk ]}

Again, using Cauchy-Buniakowsky-Schwarz relation results:

e ] ]

{, 1 \/IX,k dr\/IX,k dr + Z\/fx,i dr\/jxlg dr}z . {1

For A",

the proof is analogue:

[i (, + X2 Jor

0

|

i=1

1
D ()? i, X + Xy X i, )}
0

i=0

n

2

i=1

{

. T
Z D ()? w Xt + X X )
=1 |

j(X,k +X2

0

|

1

2
{j (Xikr )_(iks + X, ik, X, ik )d’” }}
0

=A_>0.

rs —

g

i=1

J st o g e o

Unless all the data are collected from the same crisp X, the determinants are strictly positive. For p =1 we

1X.2 + X2 Wr
IS

0

o

0

obtain the simple linear regression [9], with the unique solution (A, > 0).

4. THE APPROXIMATIVE MODEL

This section studies the MLR for fuzzy numbers in the triangular form. This kind of approach is more
suitable for practical applications. The input data, X; = (X i (r) X i (r)) Y, = (Z ; (r), Y, (r)), i=1nj=1p are

('xl]’ulj’ulj) Yt (z’ z’ l) where

i

X,

X, v =y v Y(r) =

written in the triangular form [3]: X
—u; +gi/r,Xij(r): Xy +LTU. Y, +V, —vr.

() = x,

Here is considered the approximation: I f(r)dr = [£(0)+ f(1)]/ 2. Therefore, the sum becomes:
0

_l’_lijr9 Zi(r)z
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S(bo, R ) = z Dg(b0 b Xyt by X Yi) =

i=1

7

ks ik

1
D‘(bo +b Xy +.+b Xy +b X, +...+bkp)?,.kp —Zi)zdr:|+
0

i=1

=

1
+ U (bo + by Xy 4ot by Xy + by X+t by Xy~ Y)zdr} =
0

1+15=1ky 1 i
i=1

n —1 B ! p 2
= j bo‘*'z bk/(xlk Ui +Eikj”)+z bkj(xzkj +’7ikj U ”) (yi_‘_)i+rir):| dr|+
i=1 oL j=1 j=l+1
n (1T / P 2
+ J. by + z by (xzk * Uy Uy ”)+z bk] (xlk Uy, +Zikj”)_(yl TV _‘717’)] dr| =
i=1 0L j=1 j=l+1
2
1 n )4 / P
= E [Lbo + zbk Xik ]_ (Zbkjulk ]+[ Zbk U ]_(yl _l}z):l +
i=1 j=1 j=1 j=1+1
2 2
)4 ! P p
+ l:(bo + Zbk/xiij + Lzbkjl’_liij - ( Zbkj%‘kj] - + ‘71)] + 2{[70 + (z bijfkj] - yi] .
j=1 j=1 j=1+1 j=1
Next is determined the solutions for the following system:
s _,
ob,
oS J— 4.1
~ - Oa] =Ln
6bkj

Using the substitutions (xl-kj — Uy, ) =aq, (xikj + iy ) =a,,(y,-v,)=c.,(y,+v,)=¢ fori=1n,

=ij .

j=1,p,(4.1)is equivalent with:

n /-1 n _
boz (g” +a, + inkz)"' bkj [Qilgij + aia; + xiijl.kl] +

i=1

4.2)

P n n
+ bk, E ,[2;1 +a; + ink,]+ E {bk/ [Qizaij tayay + Xy, Xy, ]} = E a;,c; + a,c; +2yx,
| i

i=1

/ n
boz (Qi,m + a0+ 2y ) + Z {bkj z [Qi,maij T a4, + 2xiijik,+1 ]} +
j i1
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n )4 n
2 =2 2 ] - = —
+b, Z [le @+ 20, [ D bka 1@y + Gy pady + 2 X | =

i=1 j=1+2 i=1

= Z [ai,1+1£f +4;,.6 + 2yixik,+1]

i=1

n

n /
by Y. (Q[p +a, + 2x[k1))+ > {bkj .

i=1 j=1

j=l+1 i=1

. n
+ > {bkj )y [ﬂz‘pﬁij @y + 2% Xy, ]} +b,

i=1 i=

Theorem:

b* is an estimator in the meaning of least squares for the parameters vector b if and only if b* is a
solution for the system (4.2).

Proof:
The matrix for the system (4.2) is:

n n
4n Z (Qn +a, + 2x,.k1) (sz +a, + 2x, )
i=l i=1
n 1 2 n
2 2 — —
(Qll + azl + 2x1k ) (gll + all + 2‘xik ) (azlaip + azlalp + 2xik1x1k )
A =] i=l i=1 i=1
n n n 2
— — = —2 2
(gip +a, + inkp) (gipa,-l +a,a; + 2xikpx,-kl) (g,.p +a;, + 2x,-kp)
i=1 i=1 i=1
Let the matrix:
1 1 1 1 ... 1 1 1 1
a4y Xy X o G A Xpky Xk

X =14, Ay Xy, Xy o Gy Gy Xy Xy,

le alp xlkp xlkp an anp Xk

xnk

I3 P

We call x, eR*,I=1p+1 the /—th row of the matrix X. Thus x, =(..1) and

X, = (21,1—1 Aoy Xy X o Dot Quiot X, xnk,,l)a I=1p+1
Obviously, X e M ., 4, (R),XT eM,,, +1(R) and from calculus we obtain XX = A.
Let r the rank of X: r=rankX =rankX" = < min(p +1,4n) Consider the vectors:

b = (bO’bl""’bp)T € RP+1 Y = (glﬂ Elayl’ylﬂgz’gm yzayza'“’gnﬂgn’ynﬂ yn)T € R4n

We have S(bo, by, by,..., bp) = (y - XTb)T (y - XTb) = ||y - XTb||2. The system (4.2) has the following matrix

p
form: Ab = Xy < XX'b = Xy. We put w = X'b = ijxj+1 e R* . Let V the vector subspace of R*"
i=0

generated by the columns x;, j =1, p + 1 from the matrix XT.
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The vectors v of this subspace have the form: v = B,x; + Bx, + ... + B,Xx,,;, where By, [;,...,B, are real

numbers. Thus v = X'g where p = (BO B, ... B p)T. The vector p € RP*! is variable then the vector v is
also variable.
But the expression ||y - V||2 = ”y - XTB”2 has a minimum which is attained if and only if v is the

orthogonal projection of y on V, or, equivalently, v = pryy = w*. Since w* € V, there exists the real

p

numbers by, by',...,b, € R such that w* = Zb;fxm. Since N = 'q*(y) depends only by y, then the real
=0

scalars by, by ,...,b, depends only by y . Thus B =b" = (bg,b* b’ )T is the estimation for b.

15 0)p

Now we will prove that p =b* = (bg,bl*,...,b; )T is a solution for the system (4.2). For this, we have

P -
wh = Z:b;ij+1 = X"b*. Thus pryy = w" < y-w" LV < x, is orthogonal on y —w*, k =1,p+1.
=0

This is equivalent with x; (y - w*) =0,k=1,p+1 so is obtained X(y - XTb*) = 0. Consequently,
XX'b* = Xy and b* satisfies the system (4.2).

We conclude that the estimators b} always exists, they verifies the relations (4.2). Reciprocally, any
solution for (4.2) which depends only by y is an estimation for b.

Note: A simple case appears when rankX = p + 1. Then rankA = rankXX" = p + 1. Therefore
det A # 0 and the matrix A is nonsingular. In this case, the system (4.2) has a unique solution, namely
b* = A~Xy.

5. NUMERICAL EXAMPLE

We consider a model when the output fuzzy data, Y, depends by two input, independent fuzzy data,
X,, X, . Suppose that we have the following three available experimental measurements:

X, =1/21/2); X, =(,1/4,1/3)Y, =(1,3/4,1/2)
Xy = (312) X, = L1, = (2,11)
Xy =@L1/3% X, =(1,2/3,1/2)Y, =(1,4/5,4/5)
Thus p=2,n=3:Y, =b, + b X, +b,X,,,i =13. Next, are computed the coefficients that appear in the
proposed model:
ay =1/2a,=3/2x, =ka, =3/4a, =4/3x, =Le =1/4¢ =3/2y =1
Ay =258y =55y =314y =hiay =3x =24, =6, =3y, =2 (5.1
ay, =La;, =7/3;% =25a5, =1/3a5, =3/2;x, =1,¢5,=1/5¢,=9/5y, =1
Four cases are possible. From the general form (4.2) we obtain, in each case, the following system of

equations with their solutions:
12b, + 24.33b, +15.91b, =15.75

1)b, > 0,b, > 0:424.33b, + 65.38b, + 41.2b, = 30.77 = b, = —0.65;b, = —6.07 < 0;b, = 10.76;
15.916, + 41.2b, + 26.7b, = 26.95
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12b, + 24.33b, +15.91b, = 15.75

2)b, > 0,b, < 0:424.33b, + 65.38b, + 33.06b, = 30.77 = b, = 1.56;b, = —0.06 < 0; b, = 0.08;

3)b, < 0,b, > 0:415.91b, + 26.7b, + 33.06h, = 2695 = b,

15.91b, + 33.06b, + 26.7b, = 20.35
12b, +15.91b, + 24.33b, = 15.75

~0.07; b, = —0.02; 5, = 1.08;
24.33b, + 33.06b, + 65.38b, = 32.39
125, + 24.33b, +15.91b, =15.75

4)b, < 0,b, < 0:424.33b, + 65.38b + 41.2b, = 3239 = b, =1.5,b, = 0.73 > 0;b, = —1.26;

15.91h, + 41.2b, + 26.7b, = 20.35

The unique solution which fulfill the initial conditions concerning the sign of the parameters b,, b,, b,

appears in the third case: b, = -0.07;5, = —0.02; 5, = 1.08. Thus Y depends by X through the relation:

Y

AN AW —

O 0

10
11

12
13

14.

15.
16.

17.
18.

= —0.07 — 0.02X, + 1.08X,.
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