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The thermosolutal linear stability of a composite two-component plasma is studied in the presence of 
Coriolis forces, finite Larmor radius, taking into account the collisions between neutral and ionized 
particles. The thermosolutal instability appears due to a material convection (thermosolutal 
convection) in a two component fluid with different molecular diffusivities which contribute in an 
opposing sense to the locally vertical density gradient.   The analysis shows that in the case of a 
stationary convection, the finite Larmor radius, stable solute gradients and rotation have stabilizing 
effects. Results also demonstrate that the mutual collisions between ionized and neutral particles does 
not affect the stationary convection. 
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1. INTRODUCTION 

The properties of ionized space and laboratory magnetic fluids (plasmas) have been intensively 
investigated theoretically and experimentally in the past fifty years. One of the key aspects studied in this 
context is the stability of plasma structures. Usually, instabilities can be divided into two categories: macro- 
and microinstabilities. Macro-instabilities occur with low frequencies compared to the plasma and cyclotron 
frequency and they are studied within the framework of magnetohydrodynamics (MHD). Physicists have 
understood the behaviour of macro-instabilities and they showed how to avoid the most destructive of them, 
but small-scale gradient driven microinstabilities are still a serious obstacle for having a stable plasma for a 
large range of parameters. Micro-instabilities are described by models which include, e.g. finite Larmor 
radius (FLR) and collisionless dissipative effects in plasmas. Time and length scales of micro-instabilities are 
comparable to the turbulent length scales and the length scales of transport coefficients. 

In general, the FLR effect is neglected. However, when the Larmor radius becomes comparable to the 
hydromagnetic length of the problem (e.g. wavelength) or the gyration frequency of ions in the magnetic 
field is of the same order as the wave frequency, finiteness of the Larmor radius must be taken into account. 

Strictly speaking, the space and time scale for the breakdown of hydromagnetics are on the respective 
scales of ion gyration about the field, and the ion Larmor frequency. In the present paper, we explore the 
effect of FLR on the stability of a two-componenent (ions and neutrals) rotating plasma. Introduction of non-
ideal effects such as the FLR is known to stabilize the plasma systems. In strong magnetic fields particles can 
gyrate many times around magnetic field lines before collisions. This gyration motion will add a 
supplementary term to collisions resulting in an additional viscosity called gyroviscosity. In the present paper 
we consider that the rate of collisions is changed by the modification in temperature and concentration. In 
such cases, the buoyancy forces can arise not only due to density differences induced by temperature 
variations, but also due to variations in solute concentration. 

The stability of plasmas with the FLR effect taken into account was studied by ].  M.N. Rosenbluth et 
al. (1962) and K.V. Roberts (1962) where the authors assumed that the non-ideal character of the plasma is 
provided by finite electrical conductivity. The combined effect of Hall currents, FLR and rotation on the 
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thermal stability of plasmas has been studied by Sharma (1972). The effect of a thermal gradient on the 
thermal stability of a fluid layer heated from below has been discussed by  S. Chandrasekhar (1961). Veronis 
(1965) has studied the problem of thermohaline convection in a layer of fluid heated and salted from below. 
The conditions under which convective motion is important in stellar atmosphere require consideration of a 
fluid acted on by a solute gradient and free boundaries. The problem of the onset of thermal and 
thermosolutal instabilities in the presence of concentration gradients is of a great importance in astrophysics 
and atmospheric physics applications, in the solar atmosphere and ionosphere, in particular. The model used 
in the present paper can be applied to stellar atmosphere where the helium acts like salt in increasing the 
density and in diffusing more slowly than heat. The effect of FLR and Hall currents on the thermosolutal 
instability of a two-component plasma has been investigated by K.C. Sharma (1991) where the authors 
derived the conditions for monotonic instability. This idea was further developed by R.C. Sharma and Sunil 
(1992) for porous media. 

The goal of the present paper is to consider the effect of FLR on the thermosolutal stability of a two-
component rotating plasma situated in a gravitational field when the concentration of the two components is 
changed. In Section II we introduce the basic physical concepts and equations used to study the 
thermosolutal stability for the two-component plasma mixture in the incompressible limit. In Section III we 
derive the dispersion relation and study the effect of change of various physical quantities on the stability of 
the system. Finally, our results are summarized in Section IV. 

2. MODEL FORMULATION AND BASIC EQUATIONS 

We consider a model of a composite incompressible plasma rotating with a uniform angular velocity 
),0,0( ΩΩ . The plasma is permeated by a homogeneous magnetic field 0B  parallel to the z-axis and we 

suppose that the intensity of the magnetic field is large enough so that the effect of FLR is important. The 
plasma is confined into a horizontal layer of thickness l0 infinitely extended in the x and y directions and is 
balanced by the vertically downward gravity (0,0,-g). The plasma layer has two incompressible components: 
ions and neutrals with densities iρ  and nρ , respectively. Due to the friction between particles, we are going 
to consider non-ideal effects such as viscosity and magnetic diffusivity, with the viscosity of neutrals being 
neglected. The collisional frequency between ions and neutrals is denoted by cν  and we neglect the influence 
of rotational motion on neutral plasma component. The effect of FLR on ionized particles implies that the 
pressure is a tensorial quantity depending on the gyration frequency of the ions. The layer is heated and 
soluted from below in such a way that a steady temperature dzdT /=β  and steady solute concentration 

gradient dzdC /'=β are maintained. At equilibrium the plasma layer satisfies the conditions 

zCCzTT ', 00 ββ −=−=  and [ ]zz ''10 βααβρρ −+=  where T0, C0 and C, C are the temperatures, 

concentrations at the bottom surface (z=0) and at an intermediate point between z=0 and z=l0 , 0ρ is the 
density at z=0, α and 'α  represent the thermal and solvent coefficients of expansion, respectively. In writing 
the perturbed equations we will use the Boussinesq approximation. 

For the sake of simplicity and in order to make analytical progress we suppose that both incompressible 
viscous ionized fluid and incompressible neutral gas behave like continuum media and the neutral gas is not 
affected by the pressure gradient, gravitation, temperature gradient and stable solute gradient. The model is 
further simplified by considering that the magnetic effects on the neutral gas are negligible. 

The linearized hydromagnetic equations describing the dynamics of the ions-neutrals mixture are given 
by 
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where ),,( iiii wvuv  and ),,( nnnn wvuv  describe the velocity perturbations for ions and neutrals, P  is the 

stress tensor, ),,( zyx bbbb is the perturbation of the magnetic field, inim ρρεννχχ /,,,', =  are the 
thermal diffusivity, solute diffusivity, magnetic diffusivity, coefficient of kinematic viscosity and the density 
ratio between neutrals and ions. In Eqs. (4) and (5), θ andγ  denote the perturbations of the temperature, and 
concentration. For simplicity, we assume that all diffusive coefficients are constant quantities. The change in 
the density ρ  caused by the perturbation in the temperature and concentration is given by 

).'(0 γααθρρ −−=  (8)

Employing a normal mode analysis, we write all perturbations in the form 
]exp[)(~),,( ntyikxikzfzyxf yx ++= where kx and ky are the x and y components of the wave number 

and n  is the growth rate assumed to be a real quantity. In the forthcoming calculations the tilde will be 
omitted. 
Substituting this Ansatz into Eqs. (1) and (2) , we obtain: 
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where εν /cn n +=Ω  and Δ+=Ω iin n ν*  with [ ])/(1*
cc nnn νεεν ++=  being the frequency of 

oscillations modified by the collisional frequency between the ion and neutrals. Applying the curl operator to 
Eq.(9) we can obtain the z-component in the form: 
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where ( ) ( ) .,,/,/ 222
zzi bvdzdDdzdD ×∇=×∇=== ξζ  

In a similar way, it is straightforward to show that the z-components of the momentum equation for ions and 
induction equation are 
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or applying the curl  operator 

,0 ζξ DBm =Ω  (14)

where .2kn mm ν+=Ω  

3. THE DISPERSION RELATION 

In what follows we are going to introduce dimensionless quantities. First, we suppose that using the normal 
mode analysis, the form of various physical quantities are given as 

{ } { } [ ]ntyikxikzXzZzKzzzWbw yxz ++ΓΘ= exp)(),(),(),(),(),(,,,,, ξζγθ  (15)

The quantities l0 and ν/0l are used to write lengths and times in dimensionless form. Accordingly, we can 
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where Ta is the Taylor number and 0ν  is the coefficient of gyroviscosity. 
In order to make the mathematics more transparent we choose to work in an operational form and we define 
the operators 
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Using these notations, the equations (4),(5),(11),(12),(13) and (14) can be rewritten as 

,01 WCD −=Θ  (18)
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,52 DZCXD −=  (23)

The above equations are used in what follows to derive the dispersion relation. 
            By eliminating )(),(),(),( zXzKzz ΓΘ  and )(zZ from the system of equations (18)-(24) and 
introducing The Chandrasekhar number 53CCQ = we obtain that the dispersion relation describing the 
evolution of W(z) is given by 
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is a dimensionless number describing the importance of Coriolis rotation with respect to the gyrorotation. 
Neglecting the collisions between ions and neutral, we recover the result obtained by Gupta & Singh (1986), 
i.e. the operator σ−− 22 aD  in their paper has been replaced by *22 σ−− aD .In what follows we are 
studying the possible solutions of Eq.(24) in several particular cases: 

(i) If the effects of FLR and rotation (V=0) are neglected, Eq.(24) reduces to 
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where we have taken into account that UV2=Ta. Eq. (25) recovers the result obtained by Sharma & Sharma 
(1981). 

(ii)  In the absence of FLR effect and neglecting the solute gradient (S=0), Eq. (24) becomes. 
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(iii) For a single plasma component (pure magnetized plasma) in the absence of ion-neutral 
collisional frequency )0,0( * == σν c the dispersion relation is of the form 

(iv)  

                               ( )[ ] ( ) )()( 2
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which is identical to the result obtained by Chandrasekhar. 

4. RESULTS 

In this section we discuss the stability of the mixture based on the analysis of the dispersion relation 
(24). 

If both plasma boundaries are free and are perfect conductors (the most appropriate model for stellar 
atmospheres see, e.g. Veronis (1965)), the boundary conditions at z*=0 and z*=1 can be written as 

,0)()()(,0)()()( *****2* ==Γ=Θ=== zXzzzDZzWDzW  (28)

and bx, by, bz are continuous functions while the tangential components are zero outside the fluid. Having in 
mind the property of W(z*) at the two boundaries, the solution of the dispersion relation (24) characterizing 
the lowest mode (where all even order derivatives of W(z*) vanish) is 
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where W0 is a constant. 
Substituting Eq. (29) into Eq. (24) we obtain the characteristic equation 
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where we have used 
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In the case of a stationary convection )0,0ˆ( 321
** ======== bbbnn σσσ  Eq.(30) reduces to 
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Having in mind the definition of *σ  we can clearly see that considering a stationary convection means that 
the collision between neutrals and ions will not appear in our calculations, i.e. the collision between the two 
species does affect the stationary convection. Eq. (31) expresses the modified Rayleigh number as a function 
of the dimensionless wavenumber x and the parameters Q1, V1,  S1  and  U. 
If the corrections due to the FLR effect are neglected )0( 0 =ν , Eq. (31) can be further reduced to     
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             If we neglect the solute gradient effect (S1=0) then we recover the result obtained by Chandrasekhar. 
In general, the study of FLR, rotational motion and solute gradient is facilitated by the analytical study of the 
quantities dR1/dU, dR1/dV1 and dR1/dS1. Using Eq. (30) it is straightforward to show that 
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for the study of the FLR effects, 
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for the effect of the Coriolis force, and 
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when studying the effect of the solute Rayleigh number. 
When the instability sets in as a stationary convection, Eq.(31) yields 
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which is always positive, so the FLR has a stabilizing effect on the thermosolutal instability. Eq. (31) also 
means that 
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The above quantity is positive provided 0
2
0 ν<Ωl which is easily satisfied for large values of the magnetic 

field, so the rotation can induce a stabilizing effect on the plasma system. In fact, the above relation shows 
that, for x>2 (i.e.for wavelengths smaller than the thickness of the layer), the rotation has always a stabilizing 
effect on the system. For given rotational speed and gyroviscosity, the quantity which controls the stability of 
the system is the thickness of the plasma layer, 0l . Finally, for a stationary convection, from eq.(31) we have 
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which implies that stable solute gradient has always a stabilizing effect on the system considered in 
stationary limit. 
           Our treatment is limited only to stationary convection (see Eq.(31) where the modified Rayleigh 
number reaches its minimum when dR1/dx=0. Accordingly, we obtain 
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Using the solutions of Eq. (34) in conjunction with Eq. (31), we are able to determine a critical Rayleigh 
number, Rc, which will determine the stability of the system. According to the usual classification, the 
system is stable for R<Rc, and it is unstable for R>Rc. 
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      Figure 1. The variation of the Rayleigh number (R1) with respect to the Chandrasekhar number when  
        U=0 for two values of the Taylor number, Ta1:Ta1=104 and Tai=105. 

 
In what follows we are going to study the stability of the system using a numerical  approach. Since we 

are interested in the minima of the relation (30) we solve the polynomial equation (34) and we choose the 
positive real solutions which then substitute in Eq. (30). Figure 1 shows the dependence of the critical 
Rayleigh number with respect to the Chandrasekhar number, Q (on logarithmic scale) in the absence of the 
FLR (U=0) and thermosolutal (S1=0) effects. Curves are  obtained for two values of the Taylor number: 
T1=104 and T1=105. As we can see, the critical Rayleigh number has a fairly constant behaviour, after which 
it decays. For both values, we find a vertical jump where we cannot obtain a stability criterion for the system 
since no solutions have been found. After this region, the dependence of the Rc becomes asymptotic. 
Increasing the effect of rotation, i.e. the Taylor number, the stability of the system is increased, so the 
rotation has a stabilizing effect. 

 If we introduce the FLR effect (Figure 2), the stability curves for all values of the Taylor number are 
moved upwards, i.e. the stability area under the curves is increased. In Figure 3, we have plotted the 
dependence of the critical Rayleigh number with respect to the Chandrasekhar number for a fixed Taylor 
number, Ta1=105, for three different values of U. For small values of Q, the stability threshold increases, but 
the area under the curve becomes smaller, i.e. the decrease in U has a stabilizing effect.  
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Figure 2. Similar to Figure 1, but with U=10 

This results can be understood having in mind the definition of U, which is the ratio between the coefficients 
of kinematic viscosity and the gyroviscosity introduced by the FLR effect. Keeping the coefficient of 
kinematic viscosity constant, the decrease in U means an increase in the gyroviscosity. As the intensity of the 
magnetic field increases, the Larmor radius of gyrating ions becomes smaller, i.e. the collisions increase 
which will lead to an increase in gyroviscosity. Therefore, an increase in the FLR effect has a stabilizing 
effect. 
 

 
Figure 3. Variation of the Rayleigh number (R1) with respect to the Chandrasekhar number for a 

      fixed Taylor number (Tai=105 and for three values of U: U=1, U=10, and U=100) 
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Finally, since the solute Rayleigh number appears only as an additive term to the expression giving the 
Rayleigh number (Eq.(30), the increase in the thermosolutal gradient will always increases the stability of the 
system (as predicted earlier). 

SUMMARY 

In the present paper we addressed the problem of linear stability of a thermosolutal mixture between 
ions and neutrals under the FLR effect, rotation and thermosolutal gradients. Analytical and numerical results 
proved that all three effects are able to stabilize the system. Our numerical analysis has been restricted to 
stationary cases but further analysis of non-stationary behaviour would be straightforward based on the 
present results 
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