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We discuss the following problem: if we have two G/G/1 queues, which of them is better? There are 
several possibilities to understand the word “better”. In our approach “better” means that the waiting 
time of the nth customer is stochastically smaller in the first queue than in the second one. 

1. NOTATION AND STATEMENT OF THE PROBLEM 

A queueuing system (or, shortly, a queue) works as follows: there exist customers which want a 
service provided by some server.  The service time is the time needed by the server to do its job. If a 
customer comes and there is at least another customer which is served, we say that the system is busy; 
otherwise, it is free. The discipline of the queue is the rule according to which the customers are served. The 
simplest is FCFS (First Come, First Served) which is also denoted by some authors by FIFO (First In, First 
Out).  

We know the queue when we know the arrival times and the service times. Let us denote by (tn)n≥1 the 
sequence of the arrival times and by (Sn)n the sequence of the service times. Thus tn is the moment when the 
n’th customer arrives in line and Sn is the time needed by the server to satisfy him. 

We can safely assume that the sequence (tn)n is non-decreasing and that Sn > 0 – there is no 
instantaneous service. We denote such a queuing system by [(Sn)n ; (tn)n] . 

The time when the nth customer is served will be denoted by τn. Remark that 

τn = tn + Wn + Sn , (1.1)

where Wn is the time spent by the n’th customer from arrival until his service begins. This is the waiting time 
of the nth customer. 

The result below is well known. 
 

Proposition 1.1. The waiting times satisfy the recurrence 

Wn+1 = (Wn + Sn – (tn+ 1 – tn))+ ∀ n ≥ 1,  W1 = 0. (1.2)

Proof. Of course, the first customer has no need to wait, thus W1 = 0. The (n+1)th customer arrives at 
the moment tn+1. The service of the nth customer is finished at τn. If τn ≤ tn+1 the system is free, thus there is 
no waiting hence Wn+1 = 0. Otherwise, he has to wait from the arrival – i.e. from tn+1 – until τn. The waiting 
time will be in that case τn – tn+1. Therefore Wn+1 = (τn – tn+1)+ � 

It is usual to denote the interarrival times tn+1 – tn by Tn . In that case the recurrence (1.2) becomes 
nicer if written as 

Wn+1 = (Wn + Sn – Tn)+ ∀ n ≥ 1,  W1 = 0. (1.3)

What maters from the point of view of waiting times are only the differences ξn = Sn – Tn. So, if we are 
interested only in their study, the recurrence becomes 
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Wn+1 = (Wn + ξn)+ ∀ n ≥ 1,  W1 = 0. (1.4)

Now, it is obvious that the sequence (τn)n is increasing. Indeed, τn+1 - τn = tn+1 + Wn+1 + Sn+1 – tn –  Wn 
–  Sn = Tn + (Wn + Sn – Tn)+ –  Wn + Sn+1 – Sn ≥ Tn + (Wn + Sn – Tn) –  Wn + Sn+1 – Sn = Sn+1 > 0.  

We can compare two queuing systems in many ways. From the point of view of the customers it is 
convenient to consider the following 

Definition. The system  [(Sn)n ; (tn)n] is absolutely better than  [(S'n)n ; (t'n)n] iff Wn ≤ W'n ∀ n ≥ 1 where 
W'n are the waiting times in the second queuing system. 

We shall only deal with this meaning of the word “better”. We shall assume the simplest situation, 
namely,  the random sequences (Sn)n and (Tn)n are i.i.d. and independent. In that case the number of 
customers which arrive in line in the interval [0,t] will be a renewal process. (However, this is not true in 
general about the number of customers served in the interval [0, t] due to obvious reasons: the random 
variables (τn+1 - τn)n≥1 have no reason to be i.i.d.: just look at their definition). 

Clearly, such a queuing system is uniquely determined by the distributions of the service times Sn and 
the interarrival times Tn. A general queuing system is usually abbreviated as GI/GI/1 FCFS. (“G” stands for 
“general”, “1” is the number of servers and FCFS is the discipline of the queue: first come first served). 

Important notation. A GI/GI/1 FCFS queuing system where the distribution of Sn is F and the 
distribution of Tn is G, will be denoted by {F,G} or, alternatively, by {S,T}.  If F = Exponential(a) and G = 
Exponential (b), then the classical notation for such a queuing system is M/M/1 (in this case the arrival 
process is Markovian and the numbers of customers in line is Markovian, too). We shall denote such a 
M/M/1 queuing system simply by {a,b}. Of course ESn = 1/ a and ETn = 1/ b. The ratio ESn / ETn is denoted 
by ρ and it is called the traffic intensity. For the M/M/1 queue {a,b} the traffic intensity is ρ = b/a. We warn 
the reader that we shall denote with the same letter both the distribution and its distribution function. If A is a 
Borel set, F(A) means its probability. But if x is a real, then F(x) means actually F((-∞, x]). If we keep that in 
mind, there is no danger of confusion. 

Le us come back to our question: if we have two GI/GI/1 queues, denoted by {F,G} (or  {S,T})  and 
{F′,G′} (or {S′,T′}) , which is better? 

2. STOCHASTIC DOMINATION 

For two deterministic queues,  [(Sn)n ; (tn)n] and [(S′n)n ; (t′n)n] it was easy to say that the first is better 
than the second if the waiting time Wn for the nth customer, is not greater than the same waiting time W′n  for 
the second one, for any n ≥ 1.  

If we deal with two GI/GI/1 queues, {F,G} and {F′,G′} , then Wn and W′n are random variables, 
possible independent (for instance when the four sequences of i.i.d. random variables (Sn), (Tn), (S′n), (T′n) 
are independent. But if X and Y are independent, we cannot expect any relation  such as X ≤ Y to exist 
between them. Nevertheless,  if we know their distributions  FX and FY we can say that X ≺st Y (X is 

stochastically dominated by Y) if there exist some probability space (Ω′,K′,P′) and some other random 
variables on it, let’s say X′ and Y′ with the same distributions as X and Y , such that X′ ≤ Y′. 

It is well known (see, for instance [6,7,8])  that X ≺st Y  ⇔ FX(x) ≥ FY(x) ∀ x ∈ ℜ. 
Definition. Let {S,T} and {S′,T′} be two GI/GI/1 FCFS queues. We say that {S,T}  is better than 

{S′,T′} – and denote that by  {S,T}  ≺ {S′,T′} –  if Wn ≺st W′n ∀ n ≥ 1.  
Or, explicitely, let (Sn)n , (Tn)n, (S′n)n , (T′n)n be four independent sequences of i.i.d. random variables. 

Let W1 = W′1 = 0  and , for n ≥ 1, Wn+1 = (Wn + Sn – Tn)+ , W′n+1 = (W′n + S′n – T′n)+ . Then  

{S,T}  ≺ {S′,T′} ⇔ Wn ≺st W′n ∀ n. (2.1)

We see that what really matter are not Sn and Tn, but their differences ξn = Sn – Tn .The following result 
is pretty obvious (and well known – see [7]) 



3 Comparision of G/G/1 queues 

Proposition 2.1. Let (Sn)n , (Tn)n, (S′n)n , (T′n)n be four independent sequences of positive i.i.d. random 
variables. Let ξn = Sn – Tn and ξ′n = S′n – T′n . Suppose that ξn ≺ st ξ′n. Then {S,T} ≺ {S′,T′}. 

Proof. Induction. Suppose that Wn ≺ st W′n . Then Wn + ξn ≺ st Wn + ξ′n ≺ st W′n + ξ′n (the invariance of 

the stochastic domination with respect to convolutions). Therefore (Wn + ξn)+ ≺ st (W′n + ξ′n)+ (the mapping 

f(x) = x+ is nondecreasing and we know that in this case X ≺ st Y ⇒ f(X) ≺ st f(Y) –  see, for instance [6, 8]). 

In other words, Wn+1 ≺ st W′n+1. � 
We simplify the things if we deal only with two sequences of i.i.d. random variables instead of four.  

 
Definition . Let (ξn)n and (ξ′n)n be two sequences of i.i.d. random  variables having the distributions F 

and F′. Let also ξ and ξ′ be two random variables such that Fξ = F and Fξ′ = F′. Consider the sequences (Wn)n 
and (W′n)n given by the recurrence 

W1 = W′1, n ≥ 1 ⇒ Wn+1 = (Wn + ξn )+ , W′n+1 = (W′n +ξ′n )+. (2.2)

Then we say that ξ is better than  ξ′ (and write ξ ≺ ++ ξ′) if Wn ≺ st W′n ∀ n ≥ 1. 
In these terms we can write 
Proposition 2.2.  Let {S,T} and {S′,T′} be two GI/GI/1 FCFS queues. Then {S,T} is better than 

{S′,T′} iff ξ ≺++ ξ′,  where  ξ = S – T and ξ′ = S′ – T′. Moreover, ξ ≺ st ξ′ ⇒ ξ ≺ ++ ξ′ .  

We intend to compare these two types of stochastic domination, “≺ st” and “≺ ++”. 
Now we restate the same result in terms of distributions. 
Suppose that W and ξ are two independent random variables with distributions G and F. The 

distribution of W + ξ is, of course, G ∗ F. What is the distribution of (W + ξ)+ ? Let us denote it by G•F. 
Notice that in our case W stands for Wn – and, in that case it is non-negative – and ξ stands for ξn. Formally, 
we can write 

(G•F) (t) = 0 if t < 0 and (G•F) (t) = (G ∗ F) (t) if t ≥ 0 (2.3)

in terms of distribution functions. Or, if terms of distributions 

G•F = (G ∗ F)D f –1 = (G ∗F)(0-)δ0 + (1 – (G ∗F)(0-))F⏐[0,∞) (2.4)

with f(x) = x+  and F⏐B (A) := F(A ∩ B) / F(B) the distribution F conditioned by the Borel set B. Here δ0 is the 
Dirac distribution concentrated at 0, δ0(A) = 1A(0). 

If we accept the notation F(+)  instead of FD f – 1 – which seems to be suggestive –  we can write 

G•F = (G ∗ F)(+). (2.5)

Let us keep in mind that  

F(+) = pδ0 + qF⏐[0,∞)
  with p = F(0-) = F((-∞,0)), q = 1 – p (2.6)

for any distribution F. 

Example 1. If F = then F(+) = . ∑
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Example 2. Suppose that a, b > 0 , ξ = S – T , S,T are independent, S ∼ Exponential(a) and T ∼ 
Exponential(b). Write in short Ea, Eb instead of Exponential(a), Exponential(b). The density of Ea will be 
denoted by ea(x) = ae-ax1[0,∞)(x) ; the distribution of – T will be denoted by E_b and its density by e_b . We say 
that this is a negative exponential distribution. Its distribution function and density are 

E_b(x) = ebx1(-∞,0)(x) + 1[0,∞)(x), e_b(x) = bebx1(-∞,0)(x). (2.7)
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In this case the distribution of ξ will be  PD ξ - 1 = Ea ∗ E_b . This distribution will be denoted by Fa,b and its 
density by fa,b.  The reader can easily check that 

( ) [ )( ) abba
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afxexe
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+

+
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Equivalently  

Fa,b = Ea ∗ E_b = pE_b + qEa, with 
)( TSE

ET
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ap
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+
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bq
+

=
+

= . (2.9)

Now , (2.9) easily implies that  

Ea•E_b = (Fa,b)+ =  pε0 + qEa (2.10)

Remark. The difference of two independent random variables exponentially distributed is thus a 
mixture of an exponential and a negative exponential. The same property holds for the discrete analog of the 
exponential –negative binomial distributions.  

We believe that the only absolute continuous distributions F,G on [0,∞) with the property that F ∗ G_ = 
pG_+ (1 – p)F  for some 0 ≤ p ≤ 1 are the exponential ones. 

  
Theorem 2.3.  Consider the distributions Fa,b from Example 2. Then 

Fa,b ≺ st Fa′,b′   ⇔ a ≥ a′, b ≤ b′  ⇔ Ea ≺ st Ea’ , Eb’ ≺ st Eb (2.11)

Fa,b ≺ ++ Fa’,b’   ⇔ a ≥ a′, b/a ≤ b′/a′ (2.12)

Remark. Let {S,T} and {S′,T′} be two GI/GI/1 FCFS queues. Let S ∼ Ea, S′ ∼ Ea’, T ∼ Eb and T′ ∼ Eb’ . 
So, (2.11) says that if S ≺ st S′ (i.e. the service time is smaller in the first queue) and T′ ≺ st T (i.e. the 

interarrival time is greater) then ξ ≺ st ξ′ hence, by Proposition 2.1,  the first queue is better.  
Recall that the ratio ρ = b / a = ES / ET is the traffic intensity of the queue {S.T}. Then (2.12) says that 

{S,T} is better than {S′,T′} if and only if both the service time and the intensity of traffic are smaller in the 
first queue.  

Proof. (The easy part). This is (2.11). From (2.10) we have 

Fa,b(t) = , Fa’,b’(t) =  
⎩
⎨
⎧

≥−
<

− 01
0

tifqe
tifpe

at

bt

⎩
⎨
⎧

≥−
<

− 0'1
0'

'

'

tifeq
tifep

ta

tb

with p’ = 
)''(

'
''

'
TSE

ET
ba

a
+

=
+

, q’ =
)''(

'
''

'
TSE

ES
ba

b
+

=
+

. Since Fa,b ≺ st Fa’,b’ ⇔ Fa,b (t) ≥ Fa’,b’(t) ∀ t we see that,  

if t < 0, that implies the inequality pebt ≥ p’eb’t ∀ t < 0 ⇔ pe - bt ≥ p’e -b’t ∀ t > 0 ⇔ e(b’ – b)t ≥ p’/p ∀ t > 0 . 
Letting t → ∞ we get  b’ ≥ b. For t > 0 we have the inequality 1 – qe – at ≥ 1 – q’e – a’t ⇔ q/q’ ≤ e(a-a’)t ∀ t > 0 
hence a ≥ a’. Conversely, if a ≥ a’ and b ≤ b’ then S ≺ st S’  and T’ ≺ st T hence ξ ≺ st ξ’ ⇔ Fa,b ≺ st Fa’,b’. 

The difficult part.  The easy part of it is “⇒”. 
Suppose that Fa,b ≺ ++ Fa’,b’. This means that Wn ≺ st W′n ∀ n ≥ 1, where Wn and W′n are constructed by 

the recurrence (2.2). Let Gn and G′n be the distributions of Wn+1 and W′n+1. Then 

G0 = G′0 = ε0, Gn+1 = (Gn ∗ Fa,b)(+), G′n+1 = (G′n ∗ Fa’,b’)(+) (2.13)

Our assumption is that Gn ≺ st G′n ∀ n ≥ 1. This  means that G1 ≺ st G′1 ⇔ (Fa,b)+ ≺ st (Fa’,b’)+ , hence 

means that   pε0 + qEa ≺ st p′ ε0 + q′ Ea (by 2.10) ⇔ 1 – qe – at ≥ 1 – q′ e – a’t ⇔ q/q′ ≤ e (a – a’) t ∀ t > 0 ⇔ a ≥ a′ 
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''  ⇔ a’/ b’ ≤ a / b ⇔ b/a ≤ b’/a’ or, in other words, 

ρ ≤ ρ′.  
The difficult part is the opposite implication “⇐”.  Now,  we know that a ≥ a′ and ρ ≤ ρ′ and have to 

prove that Gn ≺ st G’n .  
Notice that ρ ≤ ρ′ amounts to p ≥ p′. We shall work with the distributions Gn(a,p). First, we establish a 

more explicit recurrence for Gn that will help. We have G0 = ε0 , G1 = pε0 + qEa. Let us compute G2: 
G2 = (G2 ∗ Fa,b)(+) = [(pε0 + qEa)∗(pE_b + qEa)](+)  (by (2.9)) 
= (p2ε0 + pqEa + pqEa∗E_b + q2Ea∗Ea)(+) 
= [p2ε0 + pqEa + pq(pE_b + qEa) + q2Ea∗Ea](+)  (again by (2.9) 
= [p2ε0 + p2qE_b + (pq + pq2)Ea + q2Ea∗Ea](+)  
= (p2 + p2q)ε0 + (pq + pq2)Ea + q2Ea∗Ea 

If we denote by Γn = Γn(a) the Erlang distribution Gamma(n,a) = Ea
∗n , with the convention that Ea

∗0 = δ0, we 
see that there exists a pattern 

G0 = Γ0, G1 = pΓ0 + qΓ1, G2 =(p2 + p2q)Γ0 + (pq + pq2)Γ1 + q2Γ2 ,…. 

It seems that all the distributions Gn are mixtures of Γn. Indeed, if  

Gn = αn,0Γ0 + αn.1Γ1 + … + αn.nΓn (2.14)

then   

Gn ∗ Fa,b = (αn,0Γ0 + αn.1Γ1 + … + αn.nΓn)∗(pE_b + qEa) = + . ∑
=
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But Γk∗Ea = Γk+1 and a short induction points out that 

Γk∗E_b = pkE_b + pk-1qΓ1 + pk-2 qΓ2 + … +pq Γk-1 + qΓk (2.15)

Consequently , 
Gn ∗ Fa,b = (p an,0 + p2 an,1 +     p3an,2 +    p4an,3  +…+    pn+1an,n) E_b  
              +   (qan.0  + pqan,1 +  p2q an,2 +  p3q an,3  + …+   pnq an,n) Γ1  
  +      (qan,1 +  pqan,2   + p2q an,3  + ….+  pn-1q an,n)Γ2 
  +       (qan,2  +      pqan,3  + … + pn-2 an,n  ) Γ3 

………………. 
   + (qan,n-2 + pq an,n-1 + p2q an,n) Γn-1 + (qan,n-1an,n-1 + pqan,n)Γn + qan,nΓn+1 
Therefore,  

Gn+1 = (Gn ∗ Fa,b)(+) = an+1,0Γ0 + an+1,1Γ1 + … + an+1,nΓn + an+1,n+1Γn+1 (2.16)

 
where          
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Let us denote by Qn+1 (p) the infinite matrix obtained by adding lines and columns of zeroes to the above 
(n+2) ×(n+1) columns stochastic matrix; let also Γ = Γ(a) be the vector (Γn)n≥0 .Thus, for instance,  
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Q1 = , Q2 =  … 
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In that case we may write 

Gn = Gn(a,p) = Γ’(a)Qn(p) Qn-1(p)…Q2(p) Q1(p)e, (2.17)

where Γ′ stands for the transposed of Γ and e′ = (1,0,0,…). 
Now, the vector of distributions Γ has the obvious monotonicity property  

Γ0 ≺ st Γ1 ≺ st Γ2 ≺ st …. (2.18)

which implies that the distribution functions are decreasing: 

Γ0 (t)≥ Γ1(t) ≥ Γ2 (t) ≥  …. (2.19)

We claim that Γ’Qn(p) has the same monotonicity property. Indeed,  

Γ’Qn(p) = (pΓ0 + qΓ1,  p2Γ0 + pqΓ1 + qΓ2 , p3Γ0 + p2qΓ1 + pqΓ2 + qΓ3,….) 

and we have to check that  

(pkΓ0 + pk-1qΓ1 + … + pqΓk-1 + qΓk)(t) ≥ (pk+1Γ0 + pkqΓ1 + … + pqΓk + qΓk+1)(t) ∀ t (2.20)

for any k. But this is true, since i ≤ k – 1 ⇒  piqΓk-i (t) ≤ piqΓk-i-1 (t) and (pk+1Γ0 + pkqΓ1)(t) ≤ (pk+1Γ0 + 
pkqΓ0)(t) due to the fact that Γ1(t) ≤ Γ0(t) !) = pkΓ0.  

Recall that we claimed: that a ≥ a’ , p ≤ p’ ⇒ Gn(a,p) ≺ st Gn(a’,p’). Or, if we think of Gn as being 
distribution functions rather than distributions, we want to show that a ≥ a’ , p ≤ p’ ⇒ Gn(a,p) ≥ Gn(a’,p’).  

The fact is that if Γ = (Γn(t))n  is a decreasing sequence of distribution functions, then the function fn(p) 
= Γ’Qn(p) from (0,1) to [0,∞) is non - decreasing  componentwise. Indeed, its kth component is 

g(p) = pkα0 + qpk-1α1 + … + qpαk-1 + qαk (2.21)

where αi = Γi(t) ≥ 0 for some real t . If we take into account that q = 1 – p, g can be also written as 
g(p) = pn(α0 - α1) + pn-1(α1 - α2) + …+ p(αk-1 - αk) + αk , which is a polynomial with non-negative  
coefficients; hence it is obviously increasing since p > 0. 

Let us put all these facts together: first,  p ≥ p’ ⇒ Γ(a)′Qn(p) is nonincreasing and Γ(a)′Qn(p) ≥ 
Γ(a)′Qn(p′); next, according to the monotonicity property Γ(a)′Qn(p’)Qn-1(p) is again non-increasing and 

Γ(a)′Qn(p′)Qn-1(p) ≥ Γ(a)′Qn(p′)Qn-1(p′). Repeating the procedure we arrive at 

Γ′(a)Qn(p) Qn-1(p)…Q2(p) Q1(p)e ≥ Γ′(a)Qn(p′) Qn-1(p′)…Q2(p′) Q1(p′)e. (2.22)

But it is clear that a ≥ a′ ⇒ Γ(a) ≥ Γ(a′) componentwise hence from (2.22) we see that 

Γ ′(a)Qn(p′) Qn-1(p′)…Q2(p′) Q1(p′)e  ≥  Γ ′(a′)Qn(p′) Qn-1(p′)…Q2(p′) Q1(p′)e 

which, corroborated with (2.17) proves that Gn(a,p)(t) ≥ G′n(a′,p′)(t).  Or, in terms of distributions, that 
Gn(a,p) ≺ st Gn(a′,p′)  ⇔ Wn ≺ st W′n ∀ n ≥ 1.  

Remark. In the proof we heavily used the exceptional property of the exponential distributions that if 
X,Y are exponentially distributed and independent, then the distribution of X – Y is a mixture of positive and 
negative exponentials. This result makes clear when we can decide which is the best between two M/M/1 
queues. Intuitively, at least an implication should hold in general: if the service time is smaller in the first 
queue and the intensity of the traffic is smaller, too, then the first queue should be better then the second one. 
That would be nice. However, it is not true.  

The conjecture “If S ≺ st S′ and ρ ≤ ρ′ then the first queue is better” is false. 
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 Counterexample 2.4. Let S ∼ 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

4
3

4
1

21
, T ∼ 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

3
2

3
1

31
, S′ ∼ 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

2
1

2
1

21
, T′ ∼ 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

2
1

2
1

31
, with all these 

random variables  independent. Let ξ = S – T and ξ’ = S′ – T′.  Then  
- it is not true that ξ ≺ st ξ’, S’ ≺ st S (contrary to the above conjecture),  
- ρ = ρ’ and  
- ξ ≺ ++ ξ’. 

Proof. We have ES = 7/4, ET = 7/3, ES’ = 3/2, ET’ = 4/2  ⇒ ρ = ρ' = ¾. Obviously, S' ≺ st S. At a 
first glance, the queue {S,T} should be better than {S',T'}. But, 

ξ ∼ 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −−

12
3

12
1

12
6

12
2

1012
 = (αε-2 + βε-1 + γε0 + ε1) /4 with α = 2/3, β = 2, γ = 1/3, and ξ' ∼ 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −−

12
3

12
3

12
3

12
3

1012
 = (ε-2 + ε-1 + ε0 + ε1) /4 = Uniform({-2,-1,0,1}). 

The cumulative distribution functions are F := Fξ = 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −−

12
12

12
9

12
8

12
2

1012
and  

F′ := Fξ’ = 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −−

12
12

12
9

12
6

12
3

1012
. As they are not comparable, there is no stochastic domination between ξ 

and ξ′.  
Consider the waiting times Wn and Wn+1 given by the recurrences W1 = W'1 = 0 and n ≥ 1 ⇒  Wn+1 = 

(Wn+ξn)+ , W'n+1 = (W'n+ξ'n)+ with distributions Gn and G'n. We claim that Gn ≺ st G'n for any n ≥ 1. We have 

G1 = G'1 = ε0 and G2 = G'2 = (ε0 ∗ Fξ)(+) = 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

4
1

4
3

10
. In terms of distributions, the recurrence can be written as 

Gn+1 = (Gn ∗ F)(+), G'n+1 = (G'n ∗ F')(+) . To see what happens, we shall work with a bit more general 
distribution for F, namely  

F = (αε-2 + βε-1 + γε0 + ε1) /4 with α,β,γ > 0, α + β + γ = 3. (2.23)

We claim that γ < α, β ≥ 2 ⇒ Gn ≺ st G′n ∀ n . Actually, we have a more general claim, namely that 

γ < α, β ≥ 2 ⇒ (Gn ∗ F)(+) ≺ st (Gn ∗ F′ )(+) ∀ n ≥ 1. (2.24)

The reason is that if (2.24) is true could prove that Gn ≺ st G′n by induction: if that holds for n, then Gn+1 = 

(Gn ∗ F)(+) ≺ st (Gn ∗ F′)(+) ≺ st (G′n ∗ F′)(+) due to the monotonicity of the operation “•” (obviously G ≺ st G′  

does imply that G•F ≺ st G′•F ). So we shall prove (2.24). For n = 1 it is true: G1•F = G1•F'= 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

4
1

4
3

10
. 

Suppose that Gn = p0ε0 + p1ε1 + p2ε2 + … .The reader is invited to check that 

4Gn•F = [3p0 + (α+β)p1 + αp2]δ0 + [p0 + γp1 + βp2 + αp3]δ1 +[p1 + γp2 + βp3 + αp4]δ2 + ... = 

=  n
n

nnnn ppppppp δα+β+γ++δα+β+α+ ∑
∞

=
++− )(])(3[

1
2110210

(2.25)

While 

4Gn•F′ = [3p0 + 2p1 + p2]δ0 + [p0 + p1 + p2 + p3]δ1 +[p1 + p2 + p3 + p4]δ2 + ...           = (2.26)
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n
n

nnnn ppppppp δ++++δ++ ∑
∞

=
++− )(]23[

1
2110210 . 

The cummulative distribution functions are 

(4 Gn•F) (n) = 4Gn(n-1) + 3pn + (α+β)pn+1 + α pn+2  ∀ n ≥ 1 (2.27)

And 

(4 Gn•F′)(n) = 4Gn(n-1) + 3pn  +      2pn+1    +  pn+2   ∀ n ≥ 1. (2.28)

Therefore, the condition (2.24) is equivalent to 

(α + β) pn + αpn+1 ≥ 2pn + pn+1 ⇔ (1 – γ) pn ≥ ( 1 – α ) pn+1  ∀ n ≥ 1. (2.29)

We shall check by induction that Gn have this property if β ≥ 2. Actually, Gn have a stronger property, 
namely that 

(1 – γ) pn ≥ ( 1 – α ) pn+1    ∀ n ≥ 0. (2.30)

Suppose that (2.30) holds for Gn. Let us write 4Gn•F = π0ε0 + π1ε1 + π2ε2 + …..  with 

πn = pn-1 + γpn + βpn+1 + αpn+2 if n ≥ 1, π0 = 3p0 + (α+β)p1 + αp2 . (2.31)

Assume that (2.30) holds. For n ≥ 1 we see that  

(1 – γ)πn + (α – 1)πn+1 = [(1–γ)pn-1 + (α–1)pn]  +  γ [(1–γ)pn + (α–1)pn+1] + β[(1–γ)pn+1 + (α–1)pn+2] 
+α[(1–γ)pn+2 + (α–1)pn+3] 

hence is nonnegative due to our induction hypothesis. The only problem is to check that 

α + γ ≤ 1  ⇒ (1 – γ)π0 ≥ (1 - α) π1   ⇔ π0 ≥ 
γ−
α−

1
1

π1 . (2.32)

If (2.32) is true, that will complete our proof. Notice that (2.32) is equivalent to  

3p0 + (3 - γ) p1 + αp2 ≥ 
γ−
α−

1
1 (p0 + γp1 + βp2 + αp3). (2.33)

As αp2 ≥ 
γ−
α−

1
1

αp3, (2.33) will be true if  3p0 + (3 - γ) p1  ≥ 
γ−
α−

1
1 (p0 + γp1 + βp2 ) or, equivalently, if 

(3 –
γ−
α−

1
1 )p0 + (3 - γ)p1 ≥  

γ−
α−

1
1 (γp1 + βp2 ). But 

γ−
α−

1
1

γp1 + β
γ−
α−

1
1 p2  ≤ 

γ−
α−

1
1

γp1 + βp1 ≤ (γ + β)p1 (recall 

that 1 - α ≤ 1 - γ !) = (3 – α)p1 ≤ (3 - γ)p1 ≤ 2p0 + (3 - γ)p1 ≤ (3 –
γ−
α−

1
1 )p0 + (3 - γ)p1 hence (2.33) is true. So, 

we have proved our claim (2.24). � 
Remark. It is annoying that we could not find equivalent conditions for “ξ ≺ ++ ξ’ ” in a general 

situation when S ∼ (1 – p) ε1 + pε2 and T ∼ (1 – p′)ε1 + pε3.  

The condition for “ξ ≺ st ξ’ ” is easier: namely ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

≥
)1(4

1,
2
1max'

p
p ). 

3. COMPARING TWO QUEUES WITH CYCLING 

It may happen sometimes, as studied in [1],[2],[3], [4],[5] that a customer who arrives and find the 
server busy goes away and returns after a time period, θ. Even if in fact this θ is a random variable itself, 
sometimes it is not far from truth to consider it a constant. For example, if an airplane comes and finds the 
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track busy, it makes a cycle and then comes again; or in the computer case, if the data highway is busy, there 
exists a built–in delay and the same thing happens. In that case the waiting time of the nth customer is given 
by 

W1 = 0 and n ≥ 1 ⇒ Wn+1 = ⎥
⎥

⎤
⎢
⎢

⎡
⎟
⎠
⎞

⎜
⎝
⎛

θ
−+

θ
+

nnn TSW
 (3.1)

Indeed, suppose that the (n+1)th customer arrives at tn+1. In a normal situation his waiting time would 
be (Wn + ξn)+ with ξn = Sn – Tn . If Wn + ξn ≤ 0, he does not wait anymore. But, if Wn + ξn > 0, he departs and 
comes again after a time θ; if finds again the system busy, he departs again and so on, until the system 

becomes free. The number of departures is, of course, ⎥⎥
⎤

⎢⎢
⎡

θ
ξ+ nnW , where ⎡ ⎤x  is the first integer from right of 

x, defined by = k iff k –1 < x ≤ k. Denote such a queuing system by {S,T,θ}. The condition that such a 
queuing system have a stationary distribution for Wn is similar to  the usual one.  

⎡ ⎤x

Proposition 3.1. Let us consider a queue {S,T,θ}. Let Xn = Wn /θ. Then Xn satisfy the recurrence 

X1 = 0 and n ≥ 1 ⇒ Xn+1 = 
+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎥
⎤

⎢⎢
⎡
θ
ξ

+ n
nX  (3.2)

with ξn =Sn – Tn ,  which is similar to (1.4). Consequently, (Wn)n has a stationary distribution if and only if  

⎥⎥
⎤

⎢⎢
⎡
θ
ξnE   < 0. 

Proof. We write (3.1) as 
+++

+ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎥
⎤

⎢⎢
⎡
θ
ξ

+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎥
⎤

⎢⎢
⎡

θ
ξ

+=⎥
⎥

⎤
⎢
⎢

⎡
⎟
⎠
⎞

⎜
⎝
⎛

θ
ξ

+= n
n

n
n

n
nn XXXX 1 since  always 

and if k is an integer, then ⎡ ⎤ ⎡ ⎤( )++ = xx ⎡ ⎤ ⎡ ⎤xkxk +=+ . � 
It means that if we want to compare two queues {S,T,θ} and { S′,T′,θ′}, what  we have to do is to 

compare the random variables ⎥⎥
⎤

⎢⎢
⎡

θ
−TS and ⎥⎥

⎤
⎢⎢
⎡

θ
−
'

'' TS .  

Remark. The fact that if ⎥⎥
⎤

⎢⎢
⎡
θ
ξnE   < 0 then Wn has a limit distribution (stationary distribution) was 

proved in [1] using a different technique.  

Remark. It is easy to see that for any random variable X we have ⎥⎥
⎤

⎢⎢
⎡
θ→∞θ

Xlim = 1(X > 0) hence  

⎥⎥
⎤

⎢⎢
⎡
θ→∞θ

XElim = P(X > 0). Thus, if P(ξn > 0) is positive, there always exists some θ such that {S,T,θ} has no 

limit distribution for Wn. Equivalently, if θ is too great, almost any queuing system {S,T} becomes non 
feasible since Wn → ∞. The only case – hardly met in reality – when this phenomenon does not occur is 
when ess sup S ≤ ess inf T.   
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