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UNSTEADY MOTIONS OF A MAXWELL FLUID DUE TO LONGITUDINAL AND 
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The exact solutions for the motions of a Maxwell fluid due to longitudinal and torsional oscillations 
of an infinite circular cylinder are determined. These solutions, presented as sum of the steady-state 
and transient solutions, reduce to those for a Newtonian fluid as a limiting case. The steady-state 
solutions are also obtained for large values of time t. 
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1. INTRODUCTION 

Flows in the neighborhood of spinning or oscillating bodies are of interest to both academic workers 
and industry. Among them, the flows between oscillating cylinders are some of the most important and 
interesting problems of motion near oscillating bodies. As early as 1886, Stokes [1] established an exact 
solution for the rotational oscillations of an infinite rod immersed in a classical linearly viscous fluid. 
Casarella and Laura [2] obtained an exact solution for the problem of the rod undergoing both torsional and 
longitudinal oscillations in a Newtonian fluid. Later, Rajagopal [3] presents two simple but elegant solutions 
for the flow of a second grade fluid induced by the longitudinal and torsional oscillations of an infinite rod. 
Their solutions have been recently extended to Oldroyd-B fluids by Rajagopal and Bhatnagar [4]. However, 
we want to point out that all previous solutions are steady-state solutions, while in order to obtain a starting 
solution, describing the flow at small and large times after the start of the boundary wall, a transient solution 
has to be added to the steady-state solution. 

The aim of this paper is to study the motion of a Maxwell fluid due to the longitudinal and torsional 
oscillations of an infinite circular cylinder. Actually, we establish the starting solutions corresponding to 
such flows between infinite concentric circular cylinders and through a circular cylinder. Starting solutions 
for the motion of a non-Newtonian fluid due to an oscillating wall have been recently established in [5, 6]. 
These solutions, depending of the initial conditions, are presented as sum of the steady-state and transient 
solutions. For large times they tend to the steady-state solutions which are independent of initial conditions 
and periodic in time. Following Rajagopal [3], the steady-state solutions corresponding to the mentioned 
problems are also presented in simpler forms, in terms of the modified Bessel functions. In the special case, 
when the relaxation time , all solutions are going to those for a Newtonian fluid. 0→λ

2. GOVERNING EQUATIONS 

The Cauchy stress tensor T  in an incompressible Maxwell fluid is given by 
 

,μ)(, T ASLLSSSSIT =−−λ++−= p  (1)
 

where  is the indeterminate part of the stress due to the constraint of incompressibility,  the extra-
stress tensor,  the first Rivlin-Ericcksen tensor, L  the velocity gradient, 

Ip− S
A μ  the dynamic viscosity, λ  the 

relaxation time and the upper dot denotes material time differentiation.  
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The model (1) is consistent with some important microscopically models of polymers and its 
predictions of the normal-stress differences are qualitatively acceptable. It has been quite useful in the study 
of dilute polymeric fluids in viscoelasticity. 

In the following we shall seek a velocity field of the form [3, 4] 
 

,),(v),(),( ztrtrwtr eevv +== θ  (2)
 

where  and  denote the unit vectors along the θe ze θ  and z directions of the cylindrical coordinate system r, 
 and z. For such flows, the constraint of incompressibility is automatically satisfied. Since the velocity field 
 is independent of  and z, we are expecting that the extra-stress tensor S  to be also a function of r and t 

only. Further, due to the rotational symmetry 

θ
v θ

0=∂θ p  [4]. 
On substituting (1) and (2) into the balance of linear momentum, neglecting the body forces and 

assuming that there is no applied pressure gradient along the axial direction, one attains to the linear partial 
differential equations [7] (see also [4], Eqs. (28) and (35) for 02 =λ ) 
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where  is the kinematic viscosity of the fluid and ρμ=ν / ρ  its constant density. 
The uncoupled equations (3) and (4) with appropriate boundary and initial conditions can be solved in 

general by several methods. The Laplace transform can be used to eliminate the time variable. However, the 
inversion procedure for obtaining the solution is not always a trivial mater. Further, the solution so obtained 
for a second grade fluid does not satisfy the initial condition [8]. This is due to the incompatibility between 
the prescribed data. Here, we shall use the finite Hankel transforms. It is worthwhile pointing out that, in 
general, the governing equations for a Maxwell fluid are one order higher in time than the corresponding 
equations for a Newtonian fluid. Consequently, in order to solve a well-posed problem for such a fluid one 
has to require additional initial conditions [7]. 

3. MOTION BETWEEN CIRCULAR CYLINDERS 

Consider a Maxwell fluid at rest in an annular region between two infinitely long coaxial circular 
cylinders of radii  and . At time  the outer cylinder starts to oscillate according to [3, 4] 0R )( 0RR > += 0t
 

,)cos()(cos),( 01 ztVtWtR eevv ω+ω== θ  (5)
 

where  and  are the frequencies of the velocity of the cylinder. Due to the shear the fluid between 
cylinders is gradually moved. Its velocity is of the form (2) and the governing equations are (3) and (4). The 
associate initial and boundary conditions are 

1ω 0ω

 

,allfor0),v(),( 00 ttRtRw ==  (6)
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and 
 

).,[0;)0,v()0,()0,v()0,( 0 RRrrrwrrw tt ∈=∂=∂==  (8)
 

Making the change of unknown functions  
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in which  and the differential operators 1,0=n 2
2 1

r
n

r rrn −∂+∂=Δ . 

In order to obtain analytical solutions for these problems we shall use, as in [7], the well-known 
expansion theorem of Steklov. In view of this theorem the functions , whose partial derivatives ),( trun nru∂  
and  have to be piecewise continuous for each , can be written as Fourier-Bessel series absolutely 
and uniformly convergent in terms of the eigenfunctions (see [9], Sec. 97) 
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In the above relations  and )(J ⋅n )(Y ⋅n  denote Bessel functions in standard notations,  are positive 
roots of transcendental equations 

nmr
0)(B =Rrn  while the constants  are chosen such that the 

normalization conditions  
nmA
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to be satisfied. 
Now, introducing (14) into (10), multiplying then by , integrating the result with respect to r 

from  to 
)(B npn rrr

0R R  and having the initial and boundary conditions (11) and (12) in mind, we find that (see [9], 
Sec. 98) 
 

[ ] 0;)cos()sin()()()( 2 >ωλω+ωω=ν++λ tttUturtutu nnnnmnnmnmnmnm  (16)
 

and 
 

,0)0(,)0( =−= nmnmnm uUu  (17)
 

where  are the modified finite Hankel transforms of . nmU )(rUn
 

Solving the ordinary differential equations (16) with the initial conditions (17) and taking into account 
Eqs. (9) and (14), we get for the starting solutions  and  the expressions: ),( trw ),(v tr
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For large values of t, these solutions reduce to the steady-state solutions 
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respectively, 
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which are periodic in time and independent of the initial conditions. However, they satisfy the governing 
equations (3) and (4) as well as the boundary conditions (6) and (7). 

Finally, following the same way as in [3] and [4], we can find simpler forms for the steady-state 
solutions (20) and (21). These are 
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where Re denotes the real part of the complex number which follows, )(I ⋅n  and  are modified Bessel 
functions,  and 
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νλω−ω=γ /)( nnn i 1−=i . 

4. FLOW WITHIN AN INFINITE CIRCULAR CYLINDER 

Taking the limit of Eqs. (13) as  and having the normalization conditions (15) in mind, we 

obtain the eigenfunctions 
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flow within an infinite circular cylinder. Furthermore, the associated velocity fields 

 

∑∑

∑

∞

=

∞

=

∞

=

Φ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λ

−−ωνω+

+ωω+ω=

1 121

11
1

1 121

11
111

1 121

11
11

2
11

)(J
)(J

)(
2

exp
2

)(J
)(J

)sin(
2

)(J
)(J

)cos(
2

)cos(),(

n nn

n
n

n nn

n
n

n nn

n
n

rRr
rr

t
t

W
RrRr

rr
BtW

R

rRr
rr

AtW
R

tW
R
r

trw

 (24)

 

and 
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are also obtained as limiting cases of Eqs. (18) and (19). In the above relations  and  are certainly the 
positive roots of the transcendental equations 

nr0 nr1
0)(J0 =Rr  and 0)(J1 =Rr , respectively. Moreover, in view 

of [10], the entries 1 and 2 of Table X, it results that 
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For large times the starting solutions (24) and (25) tend to the corresponding steady-state solutions 
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These last two solutions can be also written in the simple forms 
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obtained again as limiting cases of (22) and (23). 

5. NUMERICAL RESULTS AND CONCLUSIONS 

In this paper, the velocity fields corresponding to the unsteady motions of an incompressible Maxwell 
fluid due to longitudinal and torsional oscillations of an infinite circular cylinder are presented as Fourier-
Bessel series. The starting solutions that have been obtained, depending on initial and boundary conditions, 
are written as sum of the steady-state and transient solutions. They describe the motion of the fluid for same 
time after its initiation. After this time, when the transients disappear, these solutions tend to the steady-state 
solutions, which are periodic in time and independent of the initial conditions.  

These solutions have been also written in simpler forms in terms of the modified Bessel functions 
 and . The numerical values as well as the diagrams corresponding to the steady-state 

solutions (26) and , respectively, (27) and , as it results from Figs. 1, are identical. The roots  
and  have been approximated by 
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both the associate partial differential equations (3) and (4) and all imposed initial and boundary conditions, 
the differentiation term by term in sums being clearly permissible. For 
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respectively, 
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In view of the asymptotic expansions for modified Bessel functions [6],  and  from 
(31) can be written in terms of the elementary functions sine, cosine, hyperbolic sine and hyperbolic cosine. 
However, the new approximations are valid only for 
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Fig. 1. Profiles of the steady-state velocities, corresponding to the motions within a circular cylinder,  

for  and 0.0011746 (glycerin), 3, 0.5Rν = λ = = .s5=t  
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