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Abstract: This paper continues recent research of authors, considering the control synthesis in the
presence of a parametric uncertainty, with application to electrohydraulic servos actuating primary
flight controls. The uncertain parameter is adjusted during the control process, using in synthesis the
methods of Control Lyapunov Functions and backstepping. The obtained control law, containing a
dynamic updating of uncertain parameter, renders the closed loop system stable and guarantees
asymptotic tracking of position references. Numerical simulations are reported from viewpoint of
servo time constant performance.
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1.1.1.1. INTRODUCTION

The present paper continues the theme of recent researches of the authors [1-4], by detailing procedure
of adaptive backstepping control synthesis for the Electrohydraulic Servos (EHSs). This procedure of
adaptive backstepping is introduced avant la lettre by Kanellakopoulos et al [5], where a characterization of
the class of nonlinear systems to which the new adaptive scheme is applicable is achieved. In our paper, an
alternative scheme to that described in Kanellakopoulos et al. [5] is proposed for an electrohydraulic servo
with unknown or uncertain parameters. So, instead of Kanellakopoulos’s adaptive scheme, herein a dynamic
update for uncertain parameter is performed during the controlled proces – in other words, on line – in the
framework of a recurrent control law based on the Control Lyapunov Functions (CLFs) and backstepping
synthesis. The estimation error is proved to be asymptotically stable. The obtained control law renders the
closed loop stable and ensures the regulation of the desired output.

Remembering [5], [1], the key idea of backstepping is simple. At every step of backstepping, a new
Control Lyapunov Function is constructed by augmentation of the CLF from the previous step by a term
which penalizes the error between a state variable and its desired value. A major advantage of backstepping
is the construction of a Lyapunov function whose derivative can be made negative definite by a variety of
control laws rather than a specific control law. It is obviously that the easy of incorporating uncertainties and
unknown parameters with each backstepping contributed to its instant popularity and rapid acceptance.

2. BACKSTEPPING ADAPTIVE CONTROL SYNTHESIS
FOR AN ELECTROHYDRAULIC SERVO

In a previous work [4], by using standard backstepping technique, position and force control laws were
synthesised for a five-dimensional mathematical model of EHS (see modelling aspects in [6], [7]):
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The state variables are denoted by: x1 [cm] − EHS load displacement; x2 [cm/s] − EHS load velocity;
3x  and 4x  are the pressures 21, pp  in the cylinder chambers, and 5x  stands for the valve position. The

differential equations governing the dynamics of the EHS are those given in [6] and are reported having as a
reference point the hydromechanical servomechanism SMHR included in the aileron control chain of
Romanian military jet IAR 99. The nominal values of the parameters appearing in equations (1) are:
m = 0.033 daNs2/cm − equivalent inertial load of primary control surface reduced at the EHS’s rod;
S = 10 cm2 − EHS’s piston area; f = 3 daNs/cm − equivalent viscous friction force coefficient;
k = 100 daN/cm − equivalent aerodynamic elastic force coefficient; w = 0.05 cm − valve-port width;
pa = 210 daN/cm2 − supply pressure; k"= 5/210 cm5/(daN×s) − internal leakage cylinder’s coefficient;
ρ = 85/(981×105) daNs2/cm4 − volumetric density of oil; cd = 0.63 − volumetric flow coefficient of the valve
port; kc = 30/12 000 cm5/daN ( )( )BV 2:= − coefficient involving the bulk modulus B of the oil used and the
EHS’s cylinder semivolume V; kv = 0.0085/(0.05×10) cm/V − valve displacement/voltage coefficient; τ =
1/573 s − time constant of the (servo)valve. The valve dynamics is evaded in the mathematical model (1); a
proportionality coefficient kv between the control (input voltage to servovalve) and valve displacement was
considered.

The following result [2], [4] describes the structure of the backstepping position control law:

Proposition 1. Let 00 21 >> kk ,  be tuning parameters. Under the (rather physical) assumptions
SVxpxpx aa <<<<< 143 ,00 , , the control u given by
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when applied to (1), guarantees asymptotic stability for the position tracking error dxxe 111 : −= ; more
precisely, ( ) 0lim 1 =

∞→
te

t
.

The basic backstepping assumes the knowledge of the system parameters. In fact, frequently it may be
necessary to identify some of these parameters off line or estimate them using on-line adaptive schemes. The
essence of adaptive control is that, by learning from the past information through this parameter adaptation
mechanism, the real parametric uncertainty can be evaded. To illustrate the adaptive backstepping
machinery, let consider the mathematical model (1). In these equations it is assumed the uncertainty of the
coefficient c enclosed in the mixed parameter Bc:
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: Bcα = .  (6)

For the sake of simplicity, one neglects the coefficient k"  of internal leakage. Thus, the pressure
equations will be rewritten in the form
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and will be added to the other equations of the system (1)
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to define a system whose equations belong to a general class of nonlinear systems treated in [5]
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where n!∈x  is the state vector, !∈u  is the control vector, ii g,f,g,f 00  are smooth vector fields of

appropriate dimensions and [ ]T
1 ,, pθθ ...  is the vector of unknown (uncertain) constant parameters. Two

geometric conditions, so called: a) feedback linearization condition and b) parametric-pure-feedback
condition must be fulfilled by the vector fields ii g,f,g,f 00 . The geometric approach therein developed, not
very familiar to most control engineers, is avoided in the present paper, instead using a simple, intuitive
scheme of adaptive backstepping having as object the system (1'), (1''), (6), which represents the
electrohydraulic servo as a tracking system. Therefore, for this system the aim of control synthesis is to have
a good tracking by the state variable x1 of the specified x1d desired position references. The closed loop
performance of the system can be measured by the actual (realised) servo time constant sτ . Thus, a good
tracking system is characterised by fast (little) time constant sτ . Both servo time constant and position
reference signal are in connection with the response of a first order system to step inputs xis

( )rtt
sd exx 1111

−−= (8)

x1s stands for stationary value of the state x1, and t1r stands for associated desired time constants.

The main result of this work is given by the following

Proposition 2. Consider the uncertain parameter α  for the EHS mathematical model (1'), (1''), (6). Let
0000 321 >ρ>>> α,,, kkk  be tuning parameters and 0≠α̂  the notation for the estimate of the

uncertain parameter α . Define the learning error α−αα ˆ~ =: . Under the rather physical assumptions
,1 SVx < ,apx << 30  apx << 40 , the control u given by
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when applied to (1'), (1''), (6), guarantees asymptotic stability for the learning error α~  and the position
tracking error dxxe 111 : −= ; more precisely, ( ) 0lim =α

∞→
t

t
~ , ( ) 0lim 1 =

∞→
te

t
.

Proof: By inspecting the system (1'), (1''), (6), it follows that the internal states x1 and x2 are stable; indeed,
the roots of the characteristic equation

02 =+λ+λ kfm (14)

are stable roots − negative real, or complex with negative real parts − due to the viscous friction force in
hydraulic cylinder. Therefore, a special care to stabilise the states x1, x2 is not necessary. Thus, evading the
equations for the states x1, x2 in the backstepping procedure, this technique will be applied only with regard
to the variables x3 − x4 and x5. Consider now the Lyapunov like function
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Then, its derivative along the system (1'), (1'') is
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Now, by using (12), (13), (10), (11), we have
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By substituting (11)−(13), one gets
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The equations for the errors ep, e5 can be written as
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A tedious way to continue the proof is that of checking the asymptotic stability of the errors α~,, 5ee p  by
using the second method of Lyapunov for systems with variable coefficients (see [8], Theorem 1). As in [4],
an alternative and very efficient procedure will be further used: that of  Barbalat's Lemma [9]. The reasoning
is as follows. Making use of the definitions (11)−(13) for 5, ee p and α~ , we have ( ) 001 >V  when 0→t

(see 05 ≠dx ). Since 01 ≤V! , it is obvious that ( ) ( )00 11 VtV ≤≤ , ( ) 0>∀ t , hence the positive function ( )tV1  is
bounded and consequently 5, ee p and α~  are bounded; so, ( )tpp =  is also bounded in the interval

[ )∞=+ ,0! . Now, taking the derivative of (16) yields
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Furthermore, 1V!!  is bounded, provided that α̂,, 21 gg  remain bounded during the dynamical process;
this condition holds, having in view the assumptions involving the variables 431 xxx ,, . So, 1V!  is uniformly
continuous (as having a bounded derivative). Let us now consider Barbalat's Lemma:

If the function f(t) is differentiable and has a finite limit ( )tf
∞→t

lim , and if f! is uniformly continuous, then

( ) 0lim =
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tf
t
! .

Thus, Barbalat’s Lemma will be applied to show that the errors pe  and 5e  tend to zero as time tends to

infinity. Indeed, applying Barbalat's Lemma, 01 →V! . Hence, pe  and 5 e  tend to zero. Now, let's look at the
second equation in (1''), which can be rewritten as follows
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and p is now seen as a bounded function of ( ) ( ) ( )txtxtppt 43:, −== . The most usual case is that of
complex roots with negative real parts, considered in the precedent works [1-4]. But, the occurrence of
negative real roots is not excluded. With initial conditions ( ) ( ) 000 11 == xx ! , the solution of (18) in this
aperiodic case is
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with qhrhqhrq −>−= ,,,,0222  positive. This variant is inherent to hydraulic servo systems owing to
small viscous friction in cylinder. Define
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Since 0→pe  when ∞→t , it is clear that ( ) ( )tptp d11 → , as ∞→t ; this means: ( ) 0>ε∀ , (∃ ) ( )εδ  such

that for ( )εδ>t  we have ( ) ( ) ε<− tptp d11 . Then, if
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simple, successive calculations finally give
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Thus, from (22) and (23), a standard proceeding gives

( ) ∞→→ txtx s   as 11 (24)

and so ends the proof.

Let notice that if 0=α~ , the control (9) is identical with the “nonadaptive” control given in [2], [4].

3. SIMULATION RESULTS AND CONCLUDING REMARKS

It is was mentioned in Section 2 that the goal of the control is to ensure a good tracking of the specified
x1d desired position references, for instance as given in (8). Simulations are used to illustrate the theoretical
findings. Thus, fourth order Runge-Kutta integrations of the tandem controlled system (1'), (1''), (6) –
compensator (9)-(13) were performed considering a succession of time intervals of length T = 0.002 s and
“zero order hold control” (which means that the control variable is kept constant during the time period T).
Numerical data are those already given in Section 2. For the simulations, two sets of values of the tuning
parameters were selected as suitable (these values are naturally related to the system of units chosen in
Section 2):1) 251 =k , 0000402 .=k , 0000003803 .=k , 30250 k×=ρα . , with reference signal

cm25501 .=sx  and s01801 .=rt  (the case of Fig. 1), and 2) 5241 .=k , 0000502 .=k , 00004403 .=k ,

30230 k×=ρα . , with reference signal cm11 =sx  and s01501 .=rt  (the case of Fig. 2). Number of time
intervals T in Figures is 150, respectively, 166. Thus, the presented plots show a good working of the
proposed adaptive backstepping controller. Certainly, an increased sx1 requires a decreased claim on actual
servo time constant sτ . The nominal (i.e., corresponding to cm25501 .=sx ; see [4] ) actual servo time
constant s0380.=τ s  is very close to the actual servo time constant of the ideal “nonadaptive” system (i.e.,
for total parameter knowledge), s0370.=τ s [2], [4]. The Figures also show that the estimation error
converges to zero. Performing various numerical simulations demonstrated that the initial parameter estimate

( )0α̂  doesn’t affect the estimation process. Moreover, the servo time constant s0380.=τ s – the main
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performance criterium of the system – is more or less maintained even when the uncertain parameter B was
changed from the decreased value 1000 daN/cm2 up to the increased value 7300 daN/cm2.

Taking into account state and control limitations, the global asymptotic stability of tracking errors in
Proposition 2 cannot be stipulated. However, suitable input signal dx1  and tuning parameters ,01 >k

,02 >k ,03 >k 0>ρα can be chosen to preserve these constraints. Specifically, the physical constraint
of control saturation 100 << u V was considered during the system integration.

This paper is naturally connected with and – and ends – the series of works  [1]-[4], wherein the
backstepping machinery, Control Lyapunov Functions and Barbalat’s lemma – powerfull tools of the
nonlinear control [11] – has been applied or adapted for some mathematical models of a servoactuator
largely used in most industries and especially in aerospace applications. Now the adaptive backstepping is
used in providing control law for an EHS five-dimensional mathematical model with uncertain or unknown
parameter. A complicated geometrical approach described in [5] is so avoided, instead promoting a relatively
simple, intuitive scheme of adaptive backstepping. Worthy noting, the tracking of input references and the
error estimation were proven to be asymptotical. The full state information was considered available.
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Fig. 1
Response to step reference signal dx1 defined by

1 0.255 cmsx = , 1 0.015 s rt = . Initial estimate of

uncertain parameter ( )ˆ 0 0.1Bcα =   (initial
estimation error of the parameter c: 43.07). Plots of
variables 1 1, ,dx x u  and / Bα# . Actual servo
performance:  τs ≅  0.038s.

Fig. 2
Response to step reference signal 1dx defined by

1 cm1x s = , 0.084 s 1t r = . Initial estimate of

uncertain parameter ( )ˆ 0 0.5Bcα = (initial estimation
error of the parameter c: 23.93).  Plots of variables

,1x u  and / Bα# . Actual servo performance

τs ≅  0.084 s.
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Table 1 Tandem system-controller of Fig. 1: robustness of performance to parameter variations

parameter –
system of units

nominal
value

maximal
admissible value

maximal
admissible

variation (%)

minimal
admissible value

minimal
admissible

variation (%)
1/213 daNscm −−−c 47.85 50.25 5 26.32 -45
12cmdaNs −−m 0.033 0.038 15 0.001 -96.97
1daNscm−−f 3 4 33 2.25 25

1daNcm−−k 100 500 400 50 -50
3cm−V 30 75 150 27 -10

2cm−S 10 18 80 9.3 -7
2daNcm−−B 6000 7400 23.33 1000 -83.33

2daNcm−−ap 210 220.5 5 84 -60
1cmV−−vk 0.017 0.0192865 13.45 0.0051 -70

s−τ 1/573 0.0020506 17.5 3.490401 410−× -80
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Fig. 3 – Robustness of system in Fig. 1 versus τ  maximal admissible value: performance worsened somewhat, τs ≅  0.042 s.

The simulation studies validate the theoretical results. Furthermore, a close correspondence between
these new findings and our recent results [2-4]  has been found. But, in the final, we note a neglected feature
in the literature of the field: the fitted key parameters of bakstepping, 0000 321 >ρ>>> α,,, kkk , do not
ensure a large parameter robustness of the performance, see Table 1. The „admissible values” in the Table
refer to that parameters limits which do not irremediable compromise the actual servo time constant and, in
fact, the stable response of the system to the specified step input; see Fig. 3 for the case of considered
maximal admissible value of τ : 0.0020506 . The sensitivity to some system parameters – apSc ,,  – is to be
underlined. Thus, future works need to pay attention to these robustness aspects of the backstepping
controllers.
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