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We consider a general class of relatively B-pseudomonotone variational inequalities over product
sets. To prove the existence of a solution of problems, the concept of pseudomonotonicity is
extended. Some recent results in this field are thus generalized.
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1. INTRODUCTION

The problems which imply variational inequality over product sets have many applications. Thus, the
Nash equilibrium problem for differentiable functions, various equilibrium-type problems, as traffic
equilibrium, spatial equilibrium and general equilibrium programming problems from economics, game
theory, operations research, mathematical physics, for example, can be modelled as variational inequality
problems [4, 10, 13, 14, 8, 12, 15]. For new results relative to this field see, for example, Pang [15], Konnov
[9], Ansari and Yao [1,2], Yang and Yao [18], Ansari and Khan [3]. Thus in [3], without using arguments
from generalized monotonicity, a concept of relatively B-pseudomonotonicity in the sense of Brezis [5,6] is
introduced. In this paper, we consider a general class of variational inequalities over product sets, which
extend many known results in this field. Then, using a fixed point theorem of Chowdhury and Tan [7], some
existence results on the solution of problems in our class are derived.

2. PRELIMINARIES

Let { }nI ,...,2,1=  be a finite index set and, for each Ii ∈ , iX  a topological vector space and iY  an
arbitrary set. For Ii ∈ , let iK  a nonempty convex subset of iX , ,iIi

KK
∈
Π= iIi

XX
∈
Π= . For Xx ∈  we write

( ) Iiixx ∈=  where ., IiXx ii ∈∈  For each Ii ∈ , let ii YKf →:  and RKKY iiii →××Ψ :  be  nonlinear maps
and ( )Iii ∈Ψ=Ψ , . Consider the Ψ -variational inequality problem over product sets

(Ψ -VIPPS) Find Kx ∈  such that ( )( ) ,0;, ≥Ψ∑
∈ Ii

iiii yxxf for all ii Ky ∈ , Ii ∈ .

Also, consider the Ψ -system of variational inequalities

(Ψ - SVIP) Find Kx ∈  such that  ( )( ) ,0;, ≥Ψ iiii yxxf  for all ii Ky ∈ , Ii ∈ .

We see that (Ψ -SVIP) implies (Ψ -VIPPS). If for each Ii ∈  we have ( )( ) ,0;, =Ψ iiii xxxf then (Ψ -
VIPPS) implies (Ψ -SVIP). Hence, in this case, problems (Ψ -VIPPS) and (Ψ -SVIP) are equivalent.
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If by ,,⋅⋅ we denote the pairing between ∗
iX  and iX  and ∗→ ii XKf :  is a nonlinear map and

( )( ) ( ) iiiiiii xyxfyxxf −=Ψ ,;,  for each Ii ∈ , then (Ψ -VIPPS)  reduces to the (VIPPS) problem
considered by, for example, Konnov [10] and Ansari, Khan [3]. In this case, Konnov proved some existence
results for a solution of (VIPPS) under relatively pseudomonotonicity or strongly relative
pseudomonotonicity assumptions in the setting of Banach space. Also in this case, problem (Ψ -SVIP)
reduces to the (SVIP) problem.

Now, for each Ii ∈  let 
∗

→ iX
i KF 2:  be a multivalued map with nonempty values and

( ),; IiFF i ∈=
*

2: XKF → a multivalued map with nonempty values and ( ),; Iii ∈Ψ=Ψ where
.: RKKX iiii →××Ψ ∗  Then, define the multivalued Ψ -variational inequality problem (Ψ -MVIPPS) over

product sets and system of multivalued Ψ -variational inequalities  (Ψ -SMVIP), respectively, by

(Ψ -MVIPPS) Find Kx ∈  and ( )xFu ∈  such that ( ) ,0;, ≥Ψ∑
∈ Ii

iiii yxu  for all ii Ky ∈ , Ii ∈ ,

where iu is the i component of u  and

(Ψ -MSMVIP) Find Kx ∈  and ( )xFu ∈  such that ( ) ,0;, ≥Ψ iiii yxu  for all ii Ky ∈ , Ii ∈ .

In order to prove the equivalence of the above problems we can proceed similarly to the case of the
equivalence of problems (Ψ -VIPPS) and (Ψ -SVIP). For establishing the main result on existence of
solutions of problems (Ψ -VIPPS) and (Ψ -SVIP), we use a fixed point theorem of Chowdhury and Tan [7].
For a set A we denote by A2  the family of all subsets of A  and by ( )Aℑ  the family of all finite subsets of
A . Next, co A  denotes the convex hull of A .

Theorem 2.1 ([7]). Let K be a nonempty  convex subset of a topological vector space (not necessarily
Hausdorff) X  and KKT 2: →  a multivalued map. Assume that the following conditions hold:

i1) for all ,Kx ∈  ( )xT  is convex;
i2) for each ( )KA ℑ∈  and for all , co Ay ∈  ( ) AyT  co1 ∩−  is open in A co ;
i3) for each ( )KA ℑ∈  and for all Ayx  co , ∈  and every net { } Γ∈ααx  in K  converging to x  such that
( ) ( ) [ ]1,0,,1 ∈∀Γ∈∀∉−+ txTxtty αα  we have ( )xTy ∉ ;

i4) there exist a nonempty closed compact subset D  of K  and an element Dy ∈~  such that ( )xTy ∈~ ,
DKx \∈∀ ;

i5) for all Dx ∈ , ( )xT is nonempty.
Then there exists Kx ∈ˆ  such that ( ).ˆˆ xTx ∈ .

3. EXISTENCE RESULTS FOR (Ψ -VIPPS) AND (SΨ -VIP)

In the first part of this section we define the concept of relatively B-pseudomonotonicity for mapping
Ψ , which extends the concept of pseudomonotonicity in the sense of Brezis [5,6] and the concept of
relatively B-pseudomonotonicity introduced by Ansari and Khan [3].

Definition 3.1. We say that f  is relatively B-pseudomonotone (respectively, relatively demimonotone)
with respect to Ψ  if for each Kx ∈  and every net { } Γ∈α

αx  in K  converging to x  (respectively, converging

weakly to x ) with  ( )( ) 0;,Ψinflim ≥∑
∈Γ∈ Ii

iiii xxxf αα

α
, we have

( )( )≥∑
∈ Ii

iiii yxxf ;,Ψ ( )( )∑
∈Γ∈ Ii

iiii yxxf ;,Ψsuplim αα

α
 for all .Ky ∈
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We note that for  ( )( ) ( ) Iixyxfyxxf iiiiiii ∈−=Ψ ,,,, , this definition reduces to the definition of
relatively B-pseudomonotonicity (respectively, relatively demimonotonicity) of f . Also, if the set I is a
singleton set, we get the concept of pseudomonotonicity defined by Brezis [5]. The next theorem gives us an
existence result for (Ψ -VIPPS).

Theorem 3.1. Assume that
i1) f  is relatively B-pseudomonotone with respect to Ψ ;
i2) for any ( ),KA ℑ∈ the mapping →x ( )( )∑

∈

Ψ
Ii

iiii yxxf ;,  is upper semicontinuous on co A ;

i3) there exists a nonempty closed compact subset D of K  and D~ ∈y  such that
( )( ) 0~;, <Ψ∑

∈ Ii
iiii yxxf  for all DKx \∈ ;

i4) the mapping  ( )( )∑
∈

Ψ
Ii

iiii yxxfy ;,!  is quasiconvex for any ;Kx ∈

i5) ( )( ) 0;, =Ψ∑
∈ Ii

iiii xxxf , ;Kx ∈∀

Then (Ψ -VIPPS) has a solution.
Proof: Let KKT 2: →  be the multivalued map given by ( ) :{ KyxT ∈= ( )( ) }0;, <Ψ∑

∈ Ii
iiii yxxf ,

.Kx ∈  We prove that T  verifies the conditions of the part (i) of our Theorem 2.1.
By (i4) we get that ( )xT  is a convex set for any .Kx ∈ Using (i2) we see that for ( )KA ℑ∈  and

∈y co A , the set ( )[ ] ∩− c
yT 1 co =A ∈x{  co :A ( )( ) }0;, ≥Ψ∑

∈ Ii
iiii yxxf  is closed in co A , thus the set

( )∩− yT 1  co A  is an open set in co A  i.e. (i2) from Theorem 2.1.
Now let us establish that (i3) of Theorem 2.1 is satisfied. Let ∈yx,  co A  and a net { } Γ∈α

αx  in K
converging to x  such that

( ) ( )( ) 01;, ≥−+Ψ∑
∈ Ii

iiiii xttyxxf αα  for all Γ∈α , [ ].1,0∈t (3.1)

By (3.1), for 0=t  we get ( )( ) 0;, ≥Ψ∑
∈ Ii

iiii xxxf αα  for all .Γ∈α  Hence

( )( ) 0;,Ψinflim ≥∑
∈Γ∈ Ii

iiii xxxf αα

α

and then by (i1) we obtain

( )( )≥∑
∈ Ii

iiii yxxf ;,Ψ ( )( )∑
∈Γ∈ Ii

iiii yxxf ;,Ψsuplim αα

α
(3.2)

Also, by (3.1) for 1=t , we have

( )( ) 0;, ≥Ψ∑
∈ Ii

iiii yxxf αα  for all Γ∈α .

This inequality yields

( )( ) 0;,Ψinflim ≥∑
∈Γ∈ Ii

iiii yxxf αα

α (3.3)

Combining (3.2) and (3.3), we obtain ( )( ) ,0;,Ψ ≥∑
∈ Ii

iiii yxxf αα  i.e. ( ).xTy ∉

We see that (i3) from Theorem 3.1 corresponds to (i4) from Theorem 2.1.
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Also, according to (i3) and definition of ,T the set ( )xT  is nonempty for all D∈x . Thus, (v) of
Theorem 2.1 is satisfied.

Hence all the conditions of Theorem 2.1 are satisfied. It follows that there exists Kx ∈ˆ  such that
( )xTx ˆˆ ∈ , i.e. ( )( ) ,0ˆ;ˆ,ˆ <Ψ∑

∈ Ii
iiii xxxf inequality which contradicts (i5). Thus, there exists Kx ∈  such that

( ) ,Φ=xT  i.e. ( )( ) ,0;, ≥Ψ∑
∈ Ii

iiii yxxf  for all ,ii Ky ∈  Ii ∈ , i.e. x is a solution of  (Ψ -VIPPS), and the

theorem is proved.
The case of real reflexive Banach spaces is considered below.

Theorem 3.2. For ,Ii ∈  let iX  be a real reflexive Banach space and iK  be a nonempty closed convex
subset of .iX  Assume (i2), (i4) and (i5) of  Theorem 3.1 and

i6) f  is relatively demimonotone wrt Ψ ;
i7) there exists Ky ∈~  such that

( )( ) 0~;,lim <Ψ∑
∈∈

∞→
Ii

iiii

Kx
x

yxxf (3.4)

where ⋅  is the product norm on X . Then (Ψ -VIPPS) has a solution.
Proof:  We should verify condition (i3) of Theorem 3.1.
Let γ  be the left-hand-side expression of (3.4). According to (i7) we have .0<γ

Let 0>ε  be such that ε≤y~  and ( )( )
2

~;, γ<Ψ∑
∈ Ii

iiii yxxf  for any . , ε>∈ xKx  Now, for each ,Ii ∈

let { },: εε ≤∈= iiiii xKxK  where i⋅  is the norm on .iX  If ∏
∈

=
Ii

iKK εε  then εK  is a nonempty weakly

compact subset of .K  Moreover, we note that, for any εKKx \∈ , we have ( )( ) .0
2

~;, <<Ψ∑
∈

γ

Ii
iiii yxxf  Thus

(i3) of Theorem 3.1 is satisfied with εKD = ,  and  the conclusion follows immediately.

Remark 3.1. According to Section 2, if for each Ii ∈ , ( )( ) ,0;, =Ψ iiii xxxf then problems (Ψ -VIPPS)
and (Ψ -SVIP) are equivalent. Hence the existence of solutions for the (Ψ -SVIP) problem is proved under
the assumptions of Theorems 3.1 or 3.2.

4. EXISTENCE RESULTS FOR (Ψ -MVIPPS ) AND (Ψ -SMVIP)

In this section we consider the case of multivalued maps, i. e., the case of problems (Ψ -MVIPPS )
and (Ψ -SMVIP) defined in Section 2. We use the technique of Yang and Yao [18] to derive the existence
results.

Definition 4.1. We say that F  is relatively pseudomonotone, respectively, relatively demimonotone
with respect to Ψ  if for each Kx ∈  and every net { } Γ∈α

αx  in K  converging to x (respectively, converging
weakly to x ) such that

( ) 0;,Ψinflim ≥∑
∈Γ∈ Ii

iiii xxu αα

α
, for all ( )αα xFu ii ∈ ,

for all ( )xFu ii ∈  we then have
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( )≥∑
∈ Ii

iiii yxu ;,Ψ ( )∑
∈Γ∈ Ii

iiii yxu ;,Ψsuplim αα

α
 for all ( )αα xFu ii ∈  and .Ky ∈

We derive important results related to the above problems using continuous selections of multivalued
maps [17]. Thus, let Z  be a topological vector space, U  a subset of Z , 

∗
→ ZUG 2:  a multivalued map and

∗→ ZUg :  a single valued map. Then g  is said to be a selection of G  on U  if ( ) ( )xGxg ∈  for all .Ux ∈
The function g  is said to be a continuous selection of G  on U  if it is continuous on U  and a selection of

G  on U . In our case, if ∏
∈

=
Ii

iYY , ∗= ii XY  for any Ii ∈ , then ∏
∈

∗∗ =→
Ii

iXXKf :  is a selection of

∗
→ XKF 2:  if and only if, for each ,Ii ∈ ∗→ ii XKf :  is a selection of 

∗
→ iX

i KF 2:  on .K

Lemma 4.1. If f  is a selection of F , then every solution of  (Ψ -VIPPS) is a solution of (Ψ -
MVIPPS ).

Proof:
Let Kx ∈  be a solution of (Ψ -VIPPS). Then ( )( ) 0;, ≥Ψ∑

∈ Ii
iiii yxxf  for all ,ii Ky ∈  Ii ∈ . We take

( ) ., Iixfu ii ∈=  Thus ( ).xfu =  Now, since f  is a selection of F , we have ( ).xFu ∈  Hence the last
inequality is equivalent to ( ) 0;, ≥Ψ∑

∈ Ii
iiii yxu  for all ,ii Ky ∈  Ii ∈ , i.e., ( )ux,  is a solution of (Ψ -

MVIPPS).
By Definitions 3.1 and 4.1 and the definition of selection for a multivalued map, we have the following

result.
Lemma 4.2. Suppose that f  is a selection of F  on K  and F  is relatively B-pseudomonotone

(respectively, relatively demimonotone) with respect to Ψ . Then f  is also relatively B-pseudomonotone
(respectively, relatively demimonotone) with respect to Ψ .

Theorem 4.1. Assume that
i1) for each ,Ii ∈ iK  is a nonempty convex subset of iX ;
i2) F  is relatively B-pseudomonotone with respect to Ψ ;
i3) f  is a continuous selection of F on K ;
i4) there exist a nonempty closed compact subset D  of K  and an element Dy ∈~  such that
( )( ) 0~;, <Ψ∑

∈ Ii
iiii yxxf  for all DKx \∈ ;

i5) the map →x ( )( )∑
∈ Ii

iiii yxxf ;,Ψ  is continuous on K  for any .Ky ∈  Then  (Ψ -MVIPPS ) has a

solution.
Proof: Using Lemma 4.2 we see that under our assumptions we can apply Theorem 3.1 for the

continuous selection f of F on .K  Hence there exists Kx ∈  a solution of (Ψ -VIPPS).
Now, for each Ii ∈  let ( ) ( ).xFxfu iii ∈=  Then, by Lemma 4.1, ( )ux,  is a solution of (Ψ -MVIPPS )

and the theorem is proved.

Now, from Theorems 3.2 and 4.1, we obtain the next result.
Corollary 4.1. Assume that
j1) for each Ii ∈ , iK  is a nonempty convex subset of a real reflexive Banach space iX ;
j2) F  is a relatively demimonotone multivalued map with respect to Ψ ;
j3) there exists Ky ∈~  such that ( )( ) .0~;,lim <Ψ∑

∈∈
∞→ Ii

iiii

Kx
x

yxxf  Then (Ψ -MVIPPS ) has a solution.
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5. SOME SPECIAL CASES

In this section we consider a special form for . , Iii ∈Ψ  Let ∗= ii XY  be the dual of iX , Ii ∈ and ⋅⋅,

the pairing between ∗
iX  and iX . For each Ii ∈ , ∗→ ii XKf :  is a nonlinear map. If

( )( ) ( ) iiiiiii xyxfyxxf −=Ψ ,;,  for Ii ∈ , then (Ψ -VIPPS) reduces to the ( )VIPPS  problem, a variational
inequality problem over product sets, considered, for example, by Konnov [9] and Ansari and Khan [3]: find

Xx ∈  such that ( ) 0, ≥−∑
∈ Ii

iii xyxf  for all ii Ky ∈ , Ii ∈ . In this case, Konnov [9] proved some existence

results for a solution of ( )VIPPS  under relatively pseudomonotonicity or strongly relative
pseudomonotonicity assumptions in the setting of Banach space.

 Also, we note that problem (Ψ -SVIP) reduces to the ( )SVIP  problem, a system of variational
inequalities: find Xx ∈  such that ( ) 0, ≥− iii xyxf  for all ii Ky ∈  and Ii ∈ .

 In this case, for some applications and further results see for example [1,3,8,11,12,15].

By using Theorems 3.1 and 3.2 we obtain
Corollary 5.1 ([3]). For each Ii ∈ , let iK  be a nonempty convex subset of a real topological vector

space (not necessarily Hausdorff) iX . Let ( ) Iiiff ∈=  be relatively B-pseudomonotone [3, Definition 3.1]

such that for each ( )KA ℑ∈ , ( )∑
∈

−→
Ii

iii xyxfx ,  is upper semicontinuous on co .A  Assume that there

exist a nonempty closed compact subset D  of K  and an element Dy ∈~  such that for all ,\ DKx ∈
( ) .0~, <−∑

∈ Ii
iii xyxf  Then ( )VIPPS  has a solution.

Corollary 5.2 ([3]). For each Ii ∈ , let iK  a nonempty closed convex subset of a real reflexive Banach
space iX . Let ( ) Iiiff ∈=  be relatively demimonotone [3] such that, for each ( )KA ℑ∈ ,

( )∑
∈

−→
Ii

iii xyxfx ,  is upper semicontinuous on co .A  Assume that there exists Ky ∈~  such that

( ) 0~,lim <−∑
∈∈

∞→ Ii
iii

Kx
x

xyxf . Then ( )VIPPS  has a solution.

We note that in [3] as an application of Corollary 5.2 the existence of a coincidence point for two
families of nonlinear operators is established. In what follows we will present these results.

Corollary 5.3 ([3]). For each Ii ∈ , let iX  be a real reflexive Banach space and ∗→ iii XKgf :,
where ∗→ ii XKg :  is a nonlinear operator. Assume that gf − , where ( ) Iiiff ∈=  and  ( ) Iiigg ∈= , is

relatively demimonotone and, for each ( )XA ℑ∈ , ( )∑
∈

−→
Ii

iii xyxfx ,  is upper semicontinuous on co .A

Further, assume that there exists Xy ∈~   such that ( )( ) 0~,lim <−−∑
∈∈

∞→
Ii

iiii

Kx
x

xyxgf . Then there exists

Xx ∈  such that ( ) ( )xgxf ii =  for each Ii ∈ .

Corollary 5.4 ([3]). For Ii ∈ , let ( )⋅⋅,,iX  be a real Hilbert space and iK  a nonempty closed convex
subset of iX . Assume that f  is relatively demimonotone with respect to Ψ  there exists Ky ∈~  with
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( ) 0~,lim <−−∑
∈∈

∞→
Ii

iiii

Kx
x

xyxfx , and that for each ( )KA ℑ∈  the mapping ( )∑
∈

−→
Ii

iii xyxfx ,  is lower

semicontinuous on co .A  Then there exists Kx ∈  such that ( ) ii xxf =  for any Ii ∈ .
Concerning the multivalued case, we see that if for each Ii ∈  we take ( ) iiiiii xyuyxu −=Ψ ,,, ,

where ( )xFu ∈ , ii Ky ∈ , Kx ∈ , problems (Ψ -MVIPPS ) and (Ψ -SMVIP) reduce to problems
(GVIPPS) and (SGVIP), respectively, considered by Ansari and Khan [3]. Thus, in this case, the results
stated in [3] are consequences of our results.
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