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The object of this paper is to estimate the structural attenuation in soils and rocks by way the
decreasing of the maximum values of the non-linear magnification functions. Using a non-linear one-
degree-of-freedom model (NKV model) with material functions in terms of the strain levels, by
numerical non-linear simulation one put into evidence the attenuation capacity of the site geological
materials neglected by linear calculus.
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1. INTRODUCTION

The strong dependence of the soils dynamic properties on strain or stress level produced by external
loads is very well known. In the previous author's papers [1], [2], [3] this nonlinear behaviour was modeled
assuming that the geological materials are nonlinear viscoelastic materials. This model describes the non-
linearity by the dependence of the material mechanical parameters: shear modulus G and damping ratio D in
terms of shear strain invariant γ: ( )γ= GG , ( )γ= DD , or in terms of displacements x:

( )G G x= , ( )D D x=  or twisting angle θ: ( )θ= GG , ( )θ= DD .
Due to these two dynamic functions – one for material strength modeling and the other including

material damping - this model can be regarded as an extension in the non-linear domain for the non-viscous
linear Kelvin-Voigt model [10], and for this reason, in the next, we will use as denomination - the non-linear
Kelvin-Voigt model (NKV model).

The NKV model has a physical correspondent in the one-degree-of-freedom system of the resonant
column (RC) apparatus [13]. The RC system is composed by a single mass (the vibration device) supported
by a spring and a damper represented by the specimen. But, due to the mechanical properties of the specimen
material both spring and damper have non-linear characteristics and thus the entire system is a non-linear one
[5].

It is experimental observed that when the external loads are increasing the rigidity is reduced, due to
the dynamic degradation effect [6], and the material damping increases. Thereby, the modulus function G is
an increasing function and damping function D is a decreasing function. These contradictory material
evolutions have contradictory effects on dynamic structural response, which can be, amplify or diminish with
respect to loading inputs.

 The NKV model is appropriate to evaluate the structural response as a result of these simultaneous and
opposite material effects because it includes both non-linear material functions – decreasing G and
increasing D - and the obtained dynamic response integrates both effects.

In this paper some numerical simulations using the NKV model will perform by using experimental
non-linear material functions ( )G G= θ  and ( )D D= θ obtained for some site materials as cohesive soils
(clay, marl), cohesionless soils (sand, gravel) and rocks (limestone and gritstone).
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2. SOME NON-LINEAR MATERIAL FUNCTIONS

In order to exemplify the non-linear behaviour of the usual site materials, in figures 2.1, 2.2 and 2.3
some non-linear material functions obtained from resonant column tests performed upon clay, marl, sand,
gravel, limestone and gritstone sample are given.

Fig. 2.1 - Dynamic functions for cohesive soils

Fig. 2.2 - Dynamic functions for cohesionless soils

Fig. 2.3 - Dynamic functions for rocks
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3. NON-LINEAR KELVIN-VOIGT MODEL

In linear dynamics, a usual description of a solid single-degree-of-freedom behaviour is given by the
Kelvin-Voigt model consisting of a spring (with a stiffness k) and a dashpot (with a viscosity c) connected in
parallel. The governing equation of this system for torsional harmonic vibrations (usually resonant column
system excitation) is:

tMkcJ ω⋅=θ⋅+θ⋅+θ sin00
!!! (3.1)

where θ is the system displacement (rotation, in this case), J0  is the moment of inertia of the vibrator, M0 are
the excitation amplitude and ω the pulsation of the harmonic external input.

Using the same method that describes the on-linearity by
strain dependence of the material parameters G and D, we
assume that the damper viscosity c and the spring stiffness k
are functions in terms of rotation θ:
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where ω0 is the system undamped natural pulsation, Ip =
πφ4/32 is the polar moment of the specimen and (φ, h) are the
diameter and height of the cylindrical specimen.

Thus, the most expected form of the governing equation
for the non-linear behaviour of this single-degree-of-freedom
system is:

( ) ( ) tMkcJ ω⋅=θ⋅θ+θ⋅θ+θ sin00
!!! (3.3)

with the analogue model from fig.1.1.
By using the change of variable t0ω=τ  and by introducing a new "time" function ϕ [4]:

( ) ( ) ( )0/ ωτθ=θ=τϕ t (3.4)

one obtains from eq. (3.3) a dimensionless form of the non-linear equation of motion:

( ) ( ) υτ⋅µ=ϕ⋅ϕ+ϕ′⋅ϕ+ϕ ′′ sinKC (3.5)

where the superscript accent denotes the time derivative with respect to τ, and:
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(3.6)

For a given normalized amplitude µ and relative pulsation υ, the non-linear equation (3.5) can be
numerically solved using a computer program [4] based on the Newmark algorithm [11], [12] and a solution
of the form ( )υµτϕ=ϕ ,;  can be obtained at n points:

( ) ( ); , ; sin( )ϕ τ υ µ = µΦ υ µ υτ − ψ (3.7)

where ( );Φ υ µ  is the non-linear magnification function.

Fig. 1.1 NKV model

 0 sinM M t= ω
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4. NON-LINEAR MAGNIFICATION FUNCTION

From known harmonic excitations with ct.µ = , the non-linear magnification functions ( ),Φ υ µ can be
obtained in terms of normalized pulsation υ only:

( ) ( ) ., ctµ=Φ υ µ = Φ υ (4.1)

This non-linear magnification function thus obtained can be used to evaluate the enlargement or
reduction of the dynamic response. As usually, the magnification functions give a measure for "the
magnification" of the dynamic response with respect to the static input. But, the same function can suggest a
qualitative image for magnification or attenuation of the dynamic response provoked by a dynamic input.

In this paper, the magnification functions have been used to compare the magnification or attenuation
of the dynamic response obtained by non-linear calculus with respect to the dynamic linear response. As one
can see in the next, this comparison make apparently the non-linear attenuation effects due to the non-linear
mechanical characteristics of the materials from site soil deposits.

These effects will be exposed with the aid of the numerical simulation results using the same NKV
model based by the single-degree-of freedom resonant column system with the material functions G and D
from figs. 2.1, 2.2 and 2.3. The excitation used in this simulation process is of harmonic type with the
normalized amplitude values µ similar to the µ values corresponding to peak ground acceleration observed
during some earthquakes [7].

The simulation results are given in figures 4.1, 4.2 and 4.3. As one can see from this figures, the peak
amplitude of the non-linear magnification functions depends on the excitation amplitude µ and the resonance
peaks occurs at different normalized pulsation υ situated before the excitation pulsation (usually soils have a
softening non-linearity type). Also, in these figures the dependence of the peak amplitude maxΦ  in terms of
normalized pulsation υ: ( )max maxΦ = Φ υ  is given under "resonant curves" denomination.

One can remark from these results that all the geological site materials exhibit non-linear effects and
have obvious attenuation capability, which can be smaller or larger in terms of loading dependence of the
non-linear mechanical characteristics.

In order to compare the attenuation capability between the site materials which has been investigated
(rocks, cohesionless soils and cohesive soils) and the loading dependence of the attenuation amount, the
resonant curves can be converted in the form ( )max maxΦ = Φ µ and then in the normalized form with respect
to their linear values. Such resonant curves in terms of normalized amplitude µ: are shown together in fig.
4.4. As expected, from this comparison results that the rock materials have reduced non-linear dependence
of their attenuation properties followed by cohesionless soils and cohesive soils with more non-linear
attenuation behaviour.

Fig. 4.1 Magnification functions for cohesive soils
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CONCLUDING REMARKS

The results illustrated in the above figures (fig. 4.1, 4.2, 4.3 and 4.4) allow us to have the following
remarks:
•  The mechanical response of all site geological materials (soils and rocks) is amplified with respect to the

same static loading but diminished with respect to the dynamic impute.
•  The non-linear calculus proves that the dynamic response is decreasing while loading level is increasing.
•  The non-linear magnification functions are proper tools for the qualitative description of the attenuation

capacity of the geological materials.
•  The resonance amplitudes of the non-linear magnification functions are inferior to the maximum

amplitude of the corresponding linear magnification function, thus non-linear calculus put into evidence
the attenuation capacity which is neglected by the linear calculus.

•  The resonance amplitude peaks of the soils and rocks are displaced towards low pulsations, which is a
typical behaviour of the materials with softening stiffness.

Fig. 4.2 Magnification functions for cohesionless soils

Fig. 4.3 Magnification functions for rocks
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•  Whereas the linear calculus leads to the unique resonance value, the non-linear calculus leads to the
multiple resonance values in terms of excitation amplitudes. These values can define a resonant function,
which give a pertinent image of the attenuation capabilities.

•  By comparison with rock materials, the soils have small initial mechanical strength and undergo more
degradation damages, but the structural dynamic attenuation is more obvious due to their internal
damping capabilities (see fig. 4.4).
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Fig. 4.4 Resonant curves in normalized form


